

Laboratory for Ultrafast X-ray and Electron Microscopy

Laser e attosecondi

Carmelo Grova & Simone Restelli

Laboratorio di Microscopia Ultraveloce con Elettroni e Raggi X Dipartimento di Fisica - Universita' di Pavia

Incontri di Fisica Moderna

19.12.2023

Il nostro gruppo

Membri del gruppo

- Prof.ssa Giulia Fulvia Mancini
- Carmelo Grova
- Simone Restelli
- Nicola Giani
- Giulia Lallo

Alumni

- Charles Bevis
- Oliviero Cannelli
- Paolo Usai

Usiamo tecnologie all'avanguardia che consentono di comprendere in modo efficiente e veloce i **rapidi processi che** hanno luogo nei nanomateriali quando questi interagiscono con impulsi di luce estremamente brevi.

Osserviamo processi del nanomondo così piccoli da raggiungere ed oltrepassare un **miliardesimo di metro** e così veloci fino a un **trilionesimo di secondo**.

Introduzione generale

Scale temporali

Natura in movimento: scale temporali «corte»

Natura in movimento: scale temporali «corte»

Natura in movimento: scale temporali «corte»

Impulso di pompa (Pump)

- Inizia la dinamica
- Funge da punto di riferimento nel tempo

Impulso di sonda (Probe)

Impulso di pompa (Pump)

- Inizia la dinamica
- Funge da punto di riferimento nel tempo

Impulso di sonda (Probe)

Impulso di pompa (Pump)

- Inizia la dinamica
- Funge da punto di riferimento nel tempo

Impulso di sonda (Probe)

Impulso di pompa (Pump)

- Inizia la dinamica
- Funge da punto di riferimento nel tempo

Impulso di sonda (Probe)

Cenni storici

I primi esperimenti ottici (ultra)veloci furono eseguiti da (Lord) George Porter, utilizzando grandi lampade flash.

The Nobel Prize in Chemistry 1967

"for their studies of extremely fast chemical reactions, effected by disturbing the equilibrium by means of very short pulses of energy"

9 1/4 of the prize

United Kingdom

Manfred Eigen

Germany

Ronald George Wreyford Norrish

1/2 of the prize
 O 1
Federal Republic of
 Uni

(9 1/4 of the prize) United Kingdom

Reazioni chimiche veloci Disturbo dell'equilibrio Impulsi molto corti

The Nobel Prize in Chemistry 1999

"for his studies of the transition states of chemical reactions using femtosecond spectroscopy"

Ahmed Zewail ha eseguito i primi esperimenti di spettroscopia a femtosecondi su piccole molecole: femtochimica!

The Nobel Prize in Physics 2018

© Arthur Ashkin Arthur Ashkin Prize share: 1/2

© Nobel Media AB. Photo: A. Mahmoud Gérard Mourou Prize share: 1/4

© Nobel Media AB. Photo: A. Mahmoud Donna Strickland Prize share: 1/4

Il Premio Nobel per la Fisica 2018 è stato assegnato "per le invenzioni rivoluzionarie nel campo della fisica dei laser", una metà ad Arthur Ashkin "per le *optical tweezers* e la loro applicazione ai sistemi biologici", l'altra metà congiuntamente a Gérard Mourou e Donna Strickland "per il loro metodo per generare impulsi ottici ultracorti e ad alta intensità." "Experimental methods that generate attosecond pulses of light for the study of electron dynamics in matter"

The Nobel Prize in Physics 2023

III. Niklas Elmehed © Nobel Priz Outreach Pierre Agostini Prize share: 1/3

III. Niklas Elmehed © Nobel Prize Outreach Ferenc Krausz Prize share: 1/3

III. Niklas Elmehed © Nobel Prize Outreach Anne L'Huillier Prize share: 1/3 "I tre Premi Nobel per la Fisica 2023 vengono premiati per i loro esperimenti, che hanno dato all'umanità nuovi strumenti per esplorare il mondo degli elettroni all'interno di atomi e molecole. Pierre Agostini, Ferenc Krausz e Anne L'Huillier hanno dimostrato un modo per creare impulsi di luce estremamente brevi che possono essere utilizzati per misurare i rapidi processi in cui gli elettroni si muovono o cambiano energia".

Principali sorgenti di impulsi nel femto-attosecondo

Energia (eV)

Energia (eV)

Complementari in:

Flusso, brillanza, flessibilita' dei parametri, stabilita' di puntamento, energia, frequenza degli impulsi, volume di dati...

Complementari in:

Flusso, brillanza, flessibilita' dei parametri, stabilita' di puntamento, energia, frequenza degli impulsi, volume di dati...

Lett. **71**, 1994 (1993)

Rundquist *et al., Science,* **280**, 1412–1415 (1998) Bartels *et al.*, *Science*, **297**(5580), 376–378.(2002)

Popmintchev *et al.*, *Nature Photon* **4**, 822–832 (2010)

Praticamente....qui sotto!

	Wavelength		
100 nm	10 nm	1 nm	0.1 nm = 1Å
1			CuK~
VUV		Soft X-ray	s 2a ₀
Extr	eme Ultraviolet		Hard X-rays
	Si _L C _K	O _K Si _K	Cu _K
10 eV	100 eV	1 keV	10 keV
	Photon energy		

Microscopia 2D and 3D di nanostrutture...

US Patent 16/302,911

Utramicroscopy, 184, 164 (2017)

Opt. Expr. 23, 30250 (2015) Ultramicroscopy **158**, 98 (2015)

... e loro risposta dinamica!

Fotografie nanometriche mostrano la **nanostruttura muoversi** in pochi **femtosecondi & in 3D** a seguito dell'interazione con **impulsi di luce ultracorti**

 10^{-15} s Nanoscale movie frames **Dynamics** position (nm +50 ps 60 40 20 0 5000 ≻ 1000 3000 2000 4000 t = +50 ps X position (nm) +200 ps 60 (mu) 20 ps 0 of 0 of 5000 ≻ 1000 2000 3000 4000 t = +200 ps X position (nm) +400 ps 60 20 5000 **>** 1000 2000 3000 4000 X position (nm) t = +400 ps 1.5 1.0 0.5 - 0.5 0 Vertical Displacement (Å)

G. F. Mancini, R. Karl et al., Sci. Adv. 4, eaau4295 (2018)

... e loro risposta dinamica!

Cosa vediamo?

- 1. Espansione impulsiva ai bordi della nanostruttura
- 2. Depressione nel substrato immediatamente adiacente alla nanostruttura
- **3. L'espansione** superficiale della nanostruttura si propaga progressivamente dai bordi **verso il centro**

1.5 - 0.5 1.0 0.5 Vertical Displacement (Å)

0

40

0

position 20

Sorgenti di raggi X impulsati

Complementari in:

Flusso, brillanza, flessibilita' dei parametri, stabilita' di puntamento, energia, frequenza degli impulsi, volume di dati...

X-ray Free Electron lasers – Laser a Elettroni Liberi (XFEL)

La radiazione è generata da un gruppo (*bunch*) di elettroni che passano attraverso una struttura magnetica (chiamata ondulatore o *wiggler*). In un FEL, questa **radiazione** viene ulteriormente **amplificata** quando la radiazione reagisce con il gruppo di elettroni in modo tale che **gli elettroni iniziano ad emettere in modo coerente**, consentendo così un **aumento esponenziale dell'intensità** complessiva della radiazione.

X-ray Free Electron lasers – Laser a Elettroni Liberi (XFEL)

Dentro al tunnel

X-ray Free Electron lasers – Laser a Elettroni Liberi (XFEL)

Dentro al tunnel

	Wavelength		
100 nm	10 nm	1 nm	0.1 nm = 1Å
VUV		Soft X-rays	CuK _α ¦ 2a₀
E	Extreme Ultraviolet		Hard X-rays
	Si _L C _K	O _K Si _K	Cu _K
10 eV	100 eV	1 keV	10 keV
	Photon energy		

Struttura a bande

- ABX₃ (A=Cs⁺, B=Pb²⁺, X=Br⁻): framework ionico flessibile
- Band gap dominato dal Bromo (banda di valenza) e dal Piombo (banda di conduzione)

Assorbimento di Raggi X...

Rehr and Albers Rev. Mod. Phys. 72, 3 (2000)

Zheng *et al.*, J. Phys. Chem Lett. 7, 22 (2016) Santomauro *et al.*, Structural Dynamics 4, 4 (2017) Liu *et al.,* J. Phys. Chem Lett. 11, 15 (2020) Liu *et al.,* J. Am. Chem. Soc. 141, 33 (2019)

...Risolto in tempo

Rehr and Albers Rev. Mod. Phys. 72, 3 (2000)

Zheng *et al.*, J. Phys. Chem Lett. 7, 22 (2016) Santomauro *et al.*, Structural Dynamics 4, 4 (2017) Liu *et al.*, J. Phys. Chem Lett. 11, 15 (2020) Liu *et al.*, J. Am. Chem. Soc. 141, 33 (2019) • Dinamica

Separare effetti puramente termici da effetti indotti dalla luce

Solo effetti causati dalla luce

Solo effetti causati dal calore

Comparare la risposta a due stimoli diversi da parte dello stesso sistema aiuta a capire i meccanismi microscopici del sistema stesso

Tracce in energia

Soglia K del Br

Dinamica temporale

- Il sistema cambia struttura e mantiene lo stesso cambiamento nel tempo
- Risposte elettronica e di struttura correlate tra loro
- Il sistema torna direttamente allo stato iniziale (di equilibrio)

Cosa ci mostra XAS alla soglia del Bromo

Effetti termici esclusi dalla fotodinamica!

Conclusioni

Conclusioni

La complementarietà di questi approcci permette lo studio di materiali complessi ed innovativi alla nanoscala

Teams & Acknowledgements

https://luxem.unipv.it/

UNIVERSITÀ DI PAVIA Dipartimento di Fisica

