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1. INTRODUCTION 

On the program it says this is a keynote speech--and I don't  know 
what a keynote speech is. I do not intend in any way to suggest what should 
be in this meeting as a keynote of the subjects or anything like that. I have 
my own things to say and to talk about and there's no implication that 
anybody needs to talk about the same thing or anything like it. So what I 
want to talk about is what Mike Dertouzos suggested that nobody would 
talk about. I want to talk about the problem of simulating physics with 
computers and I mean that in a specific way which I am going to explain. 
The reason for doing this is something that I learned about from Ed 
Fredkin, and my entire interest in the subject has been inspired by him. It 
has to do with learning something about the possibilities of computers, and 
also something about possibilities in physics. If we suppose that we know all 
the physical laws perfectly, of course we don't  have to pay any attention to 
computers. It's interesting anyway to entertain oneself with the idea that 
we've got something to learn about physical laws; and if I take a relaxed 
view here (after all I 'm here and not at home) I'll admit that we don't  
understand everything. 

The first question is, What kind of computer are we going to use to 
simulate physics? Computer theory has been developed to a point where it 
realizes that it doesn't make any difference; when you get to a universal 
computer, it doesn't matter how it's manufactured, how it's actually made. 
Therefore my question is, Can physics be simulated by a universal com- 
puter? I would like to have the elements of this computer locally intercon- 
nected, and therefore sort of think about cellular automata as an example 
(but I don't  want to force it). But I do want something involved with the 
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N qubits: d=2N

quantum 
parallelism

“I want to talk about the possibility that there is to be an exact 
simulation, that the computer will do exactly the same as nature. If 
this is to be proved and the type of computer is as I've already 
explained, then it's going to be necessary that everything that 
happens in a finite volume of space and time would have to be 
exactly analyzable with a finite number of logical operations. The 
present theory of physics is not that way, apparently. It allows 
space to go down into infinitesimal distances, wavelengths to get 
infinitely great, terms to be summed in infinite order, and so forth; 
and therefore, if this proposition is right, physical law is wrong.”

Journal of Statistical Physics, Vol. 22, No. 5, 1980 
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In this paper a microscopic quantum mechanical model of computers as 
represented by Turing machines is constructed. It is shown that for each 
number Nand Turing machine Q there exists a Hamiltonian HN ~ and a class 
of appropriate initial states such that if ~QN(0) is such an initial state, then 
~FoN(t) = exp(--iHNQt) ~on(0) correctly describes at times t3, t6,..., tan 
model states that correspond to the completion of the first, second,..., Nth 
computation step of Q. The model parameters can be adjusted so that for an 
arbitrary time interval A around re, tG,..., taN, the "machine" part of tFQN(t) 
is stationary. 

KEY WORDS: Computer as a physical system; microscopic Hamiltonian 
models of computers; Schr6dinger equation description of Turing machines; 
Coleman model approximation; closed conservative system; quantum spin 
lattices. 

1. I N T R O D U C T I O N  

There are  many  reasons to  a t t empt  the cons t ruc t ion  of  a q u a n t u m  mechanical  
model  of  compute rs  and the compu ta t i on  process.  Compute r s  are large, finite 
physical  systems which p lay  an impor t an t  role  in science today.  The success 
in developing  simple q u a n t u m  mechanical  models  o f  complex  systems such 
as lat t ice systems, r ing models ,  ~ and  the measurement  process  (~-6l en- 
courages  one to t ry  to develop such models  for  these more  complex processes.  

Of  poten t ia l ly  greater  impor tance  is the fact  tha t  if  one is to  make  any 
progress  toward  giving a q u a n t u m  mechanica l  descr ip t ion  of  intel l igent 
b e i n g s - - i f  it  is poss ible  at  a lW,8)- - then  one mus t  first give such a descr ip t ion  

1 Centre de Physique Th6orique, Section II, CNRS, Marseilles, France. 
2 Permanent address: Division of Environmental Impact Studies, Argonne National 

Laboratory, Argonne, Illinois. 
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Abstract 

A computer is generally considered to be a universal 
computational device; i.e., it is believed able to simulate 
any physical computational device with a cost in com- 
putation time of at most a polynomial factol: It is not 
clear whether this is still true when quantum mechanics 
is taken into consideration. Several researchers, starting 
with David Deutsch, have developed models for quantum 
mechanical computers and have investigated their compu- 
tational properties. This paper gives Las Vegas algorithms 
for finding discrete logarithms and factoring integers on 
a quantum computer that take a number of steps which is 
polynomial in the input size, e.g., the number of digits of the 
integer to be factored. These two problems are generally 
considered hard on a classical computer and have been 
used as the basis of several proposed cryptosystems. (We 
thus give the first examples of quantum cryptanulysis.) 

1 Introduction 

Since the discovery of quantum mechanics, people have 
found the behavior of the laws of probability in quan- 
tum mechanics counterintuitive. Because of this behavior, 
quantum mechanical phenomena behave quite differently 
than the phenomena of classical physics that we are used 
to. Feynman seems to have been the first to ask what effect 
this has on computation [13, 141. He gave arguments as 
to why this behavior might make it intrinsically compu- 
tationally expensive to simulate quantum mechanics on a 
classical (or von Neumann) computer. He also suggested 
the possibility of using a computer based on quantum me- 
chanical principles to avoid this problem, thus implicitly 
asking the converse question: by using quantum mechan- 
ics in a computer can you compute more efficiently than 
on a classical computer. Other early work in the field of 
quantum mechanics and computing was done by Benioff 

[ 1,2]. Although he did not ask whether quantum mechan- 
ics conferred extra power to computation, he did show that 
a Thing machine could be simulated by the reversible uni- 
tary evolution of a quantum process, which is a necessary 
prerequisite for quantum computation. Deutsch [9,10] was 
the first to give an explicit model of quantum computation. 
He defined both quantum Turing machines and quantum 
circuits and investigated some of their properties. 

The next part of this paper discusses how quantum com- 
putation relates to classical complexity classes. We will 
thus first give a brief intuitive discussion of complexity 
classes for those readers who do not have this background. 
There are generally two resources which limit the ability 
of computers to solve large problems: time and space (i.e., 
memory). The field of analysis of algorithms considers 
the asymptotic demands that algorithms make for these 
resources as a function of the problem size. Theoretical 
computer scientists generally classify algorithms as effi- 
cient when the number of steps of the algorithms grows as 
a polynomial in the size of the input. The class of prob- 
lems which can be solved by efficient algorithms is known 
as P. This classification has several nice properties. For 
one thing, it does a reasonable job of reflecting the per- 
formance of algorithms in practice (although an algorithm 
whose running time is the tenth power of the input size, 
say, is not truly efficient). For another, this classification is 
nice theoretically, as different reasonable machine models 
produce the same class P. We will see this behavior reap- 
pear in quantum computation, where different models for 
quantum machines will vary in running times by no more 
than polynomial factors. 

There are also other computational complexity classes 
discussed in this paper. One of these is PSPACE, which 
are those problems which can be solved with an amount 
of memory polynomial in the input size. Another impor- 
tant complexity class is NP, which intuitively is the class 
of exponential search problems. These are problems which 
may require the search of an exponential size space to find 
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168 10.1. CORRELAZIONI ISTANTANEE

Figura 10.1: Due particelle vengono generate in uno stato di singoletto (vedi Eq.
(10.3)) mediante decadimento o mediante un mezzo ottico nonlineare, e raggiun-
gono due sperimentatori molto lontani—Alice e Bob. Essi eseguono una misura-
zione del verso dello spin in direzioni parallele. Il verso dello spin misurato risulta
sempre opposto per Alice e Bob, qualunque sia la direzione di misurazione. Il ver-
so misurato da uno dei due osservatori è ognuno dei due versi opposti con ugual
probabilità 1

2 . Gli eventi delle misurazioni di Alice e Bob sono space-like.

space-like, e non può esserci relazione di causalità: in e↵etti, come ben noto, cor-
relazione e causalità sono due concetti indipendenti. Il fatto che il verso dello spin
risulta sempre opposto, indipendentemente dalla scelta della direzione di misura,
ad un’analisi superficiale potrebbe sembrare utilizzabile per fare comunicazione
istantanea. Ma non c’è nessuna possibilità di comunicazione, perchè il risultato
della misura di Alice, essendo casuale, non è da lei controllabile (e lo stesso dicasi
per Bob). La dimostrazione matematica dell’impossibilità di comunicare è che lo
stato marginale di Bob è ⇢ = 1

2 I2, ed è indipendente da ciò che fa Alice.
Se si scelgono le direzioni di misura perpendicolari fra loro—anzichè parallele—

i risultati delle misurazioni di Alice e Bob sono completamente scorrelati, come è
possibile calcolare facilmente dalle ampiezze di probabilità riscrivendo lo stato
come segue

| i =
1
2

(| "i ⌦ |!i � | "i ⌦ | i � | #i ⌦ |!i � | #i ⌦ | i). (10.4)

Per direzioni di misurazione a 45o, invece, le correlazioni fra i risultati di Alice e
di Bob sono esotiche, e, come vedremo subito, mettono in crisi il realismo locale.
In una interpretazione realista-locale si possono solo spiegare le correlazioni per
direzioni di misura di Alice e Bob parallele e perpendicolari, ma non, ad esempio,
per direzioni che formano un angolo di 45o.

Per chiarire meglio le idee, cerchiamo prima di capire la di↵erenza fra i seguen-
ti tipi di correlazioni: locali, nonlocali-acausali, e causali.1 Per illustrare questi
concetti utilizzerò un’idea didattica di Sandu Popescu, professore a Bristol. L’idea
si basa su di un esperimento mentale eseguito mediante dei “comunicatori”, che
chiamerò Comunicatori di Popescu.

1Si ribadisce che di per se’ una correlazione non può essere causale. Causale è la dipendenza
della probabilità da un parametro. Tale dipendenza connette causalmente ad esempio una scelta di
setting sperimentale di Alice con la probabilità marginale di misurazione di Bob.

versione: 20 novembre 2018 G. M. D’Ariano
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Quantum Foundations in the Light of
Quantum Information

Christopher A. Fuchs

Computing Science Research Center

Bell Labs, Lucent Technologies

Room 2C-420, 600–700 Mountain Ave.

Murray Hill, New Jersey 07974, USA

Abstract

In this paper, I try to cause some good-natured trouble. The issue at stake is when
will we ever stop burdening the taxpayer with conferences and workshops devoted—
explicitly or implicitly—to the quantum foundations? The suspicion is expressed that
no end will be in sight until a means is found to reduce quantum theory to two or
three statements of crisp physical (rather than abstract, axiomatic) significance. In
this regard, no tool appears to be better calibrated for a direct assault than quantum
information theory. Far from being a strained application of the latest fad to a deep-
seated problem, this method holds promise precisely because a large part (but not all)
of the structure of quantum theory has always concerned information. It is just that
the physics community has somehow forgotten this.

1 Imprimatur

im·pri·ma·tur (̂ıḿ pre-mä1ter, -mâ1ter)
1. Official approval or license to print or
publish, especially under conditions of cen-
sorship.

— American Heritage Dictionary

The title of the NATO Advanced Research Workshop that gave birth to this volume was
“Decoherence and its Implications in Quantum Computation and Information Transfer.” It
was a wonderful meeting—the kind most of us lick our lips for year after year, with little
hope of ever tasting. It combined the best of science with the exotic solitude of an island far,
far away. One could not help but have a creative thought shaken loose with each afternoon’s
gusty wind. Indeed, it was a meeting that will make NATO proud. But, as any attendee can
tell you, the most popular pastime—in spite of those windy beaches and dark tans—was an

1
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T
his year marks the centenary of quantum 
mechanics. Despite earlier work by Max 
Planck, it was Albert Einstein’s Nobel prize-
winning 1905 paper1 on the photoelectric 
eff ect that gave us what is arguably the greatest 

scientifi c theory of all time. Subsequently, the stones 
that make up the exquisite structure of quantum 
mechanics were laid out, one by one, by a stream of 
legendary giants such as Niels Bohr, Erwin Schrödinger 
and Werner Heisenberg — sometimes to the horror 
of Einstein. An almost inevitable consequence of this 
collective foundational eff ort over so many years is that 
quantum mechanics, for all its elegance, is built upon a 
rather disjointed, ad hoc set of axioms.

Quantum mechanics has forced us to rethink 
the nature of the physical world, its teachings oft en 
running counter to our misleading macroscopic 
experience. It is time to pause and refl ect on what 
we’ve learned in the course of these 100 years. 
Alongside Christopher Fuchs2, I contend that there 
is a fresh perspective to be taken on the axioms 
of quantum mechanics that could yield a more 
satisfactory foundation for the theory.

NEW HORIZONS

Quantum mechanics has changed our outlook on the 
world. Th e transistor, the laser, superconductivity, the 
atomic bomb — these early applications of the theory 
are but a few among those that have reshaped the 
way we live. Th e transistor made possible a dramatic 
increase in computation speed. However, given 
enough time, cog-and-wheels devices such as Charles 
Babbage’s analytical engine are, in principle, capable 
of the same calculations. In a very real sense, the 
modern electronic computer is essentially a classical 

device. Could genuinely quantum-mechanical eff ects 
be harnessed for computing purposes?

In the early 1980s, it occurred to Richard 
Feynman3 and David Deutsch4 that a quantum 
computer could become so effi  cient that it would far 
outperform its classical counterpart. For example, an 
atom can be simultaneously in its ground and excited 
states. If we assign classical bit 0 to one state and bit 
1 to the other (Fig. 1), this gives us a quantum bit, 
or qubit. If we string together ten qubits, they can 
be collectively in all 1024 classical states of ten bits, 
and we can compute using all those states in parallel. 
If we replace those ten qubits by one thousand, we 
obtain 21,000 (roughly 10301) simultaneous operations. 
Th is entails an amount of parallelism that could not 
be matched by a classical computer the size of the 
Universe, in which each elementary particle would 
be harnessed as a processing unit.

Quantum computing was at fi rst regarded as a 
mere theoretical concept, but interest in it grew when 
Peter Shor discovered a way to use its capabilities to 
factorize large numbers effi  ciently5. Such a computer 
would threaten the public-key cryptographic 
schemes currently in use, in particular for the 
secure transmission of credit card numbers over the 
Internet. Electronic commerce in its current form is 
saved from a catastrophic collapse only because the 
construction of a full-size quantum computer is, for 
the moment, eluding our technological capabilities. 
And we can only shiver to think of the eff ect that 
such a collapse of classical cryptography could have 
on national security.

Even though the potential of quantum 
computers is mind-boggling, that does not change 
the theoretical notion of what is computable. Th e 
mathematical theory of computability is rooted in 

Is information the key?
GILLES BRASSARD
is in the Département d’informatique et de recherche opérationnelle, Université de Montréal, Québec H3C 3J7, Canada.

e-mail: brassard@iro.umontreal.ca

Quantum information science has brought us novel means 
of calculation and communication. But could its theorems 
hold the key to understanding the quantum world at its most 
profound level? Do the truly fundamental laws of nature 
concern — not waves and particles — but information?
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154 3 Quantum Thermodynamics

Fig. 3.9 Model of quantum heat engine discussed in the text. The machine is composed by two
qubits with energy spacings E1 and E2, which are in thermal contact with reservoirs at temperatures
T1 and T2. Work extraction from an external driving field is substituted by a quantum weight
consisting of an infinite energy ladder with spacing Ew = E2 − E1. Picture taken from Ref. [181]

and corresponding energy eigenvalues {0, E1, E2, E1 + E2}. Each qubit is assumed
to be in thermal equilibrium with its respective reservoir, ρ1 = e−β1 Ĥ1/Z1 and ρ2 =
e−β2 Ĥ2/Z2, with β1 = 1/kBT1 and β2 = 1/kBT2. This implies that the populations
of the four-level system are given by

p00 =
1

Z1Z2
, p10 =

e−β1E1

Z1Z2
, p01 =

e−β2E2

Z1Z2
, p11 =

e−β1E1−β2E2

Z1Z2
.

The inner transition of the four level system plays an important role in the model,
and will be called the virtual qubit of the machine. The ratio of its populations obeys
the following Gibbs ratio [181]

p01
p10

= e−βvEv , with βv ≡ E2

Ev
β2 − E1

Ev
β1, (3.100)

where Ev ≡ E2 − E1 and the so-called (inverse) virtual temperature, βv, has been
introduced. Remarkably βv can take negative values when E2β2 ! E1β1, i.e. for the
ratio between the temperatures of the reservoirs sufficiently large T2 " (E2/E1)T1.
When this condition is met, the virtual qubit levels of the machine show population
inversion, a feature which facilitates work extraction from the reservoirs.

As commented before, to achieve work extraction without external manipulation
of the machine, a quantum weight is provided, in such a way that lifting the weight
corresponds to work extraction. The weight is modeled by an unbounded ladder
system with energy levels equally spaced and resonant with the virtual qubit of the
machine

Ĥw =
∞∑

n=−∞
nEv|n⟩⟨n|w. (3.101)

Macchine termiche quantistiche e nanotecnologie

Meccanica statistica quantistica di non-equilibrio 
Il lavoro e il calore non sono delle “osservabili”
Definizioni consistenti richiedono un approccio 
operazionale  (correlazioni, coerenza, controllo)
Ruolo dell’informazione:  Demone di Maxwell, 
macchina ciclica di Szilard

OTTICA QUANTISTICA
Tecniche avanzate di meccanica quantistica 

Teoria dell'ottica quantistica,  
dei sistemi quantistici aperti, 
della stima
Applicazioni

Acquisizione di “intuizione fisica” della teoria quantistica 
attraverso l’ottica.
Preparazione alla ricerca (working knowledge): 
Tecniche di calcolo e di simulazione, 
Analisi e descrizione matematica di devices sperimentali  
Teoria dei sistemi quantistici aperti 

Teoria dell’informazione classica e quantistica 



QUANTUM INFORMATION

Metodi di certificazione di capacità per canali di 
comunicazione quantistici rumorosi

Crittografia quantistica a molti utenti

Metodi di rivelazione di entanglement

Stati ipergrafi negli algoritmi 
quantistici e nelle reti neurali

Termodinamica quantistica di modi bosonici

Quantum Information theory  
Capacità di canale, quantum computation, entanglement 


Fondamenti  
Il tempo in meccanica quantistica 

Quantum Metrology 

Usare effetti quantistici per migliorare 
la precisione delle misure 




QUANTUM FOUNDATIONS
Automi cellulari e teoria di campo

Legge fisica come algoritmo

Località, omogeneità, isotropia

Analisi strutturale degli automi cellulari

Rinormalizzazione

a b

e
b
a a

b ab

a2

ab2

FQFT

OPT

Teorie alternative (fermionica, reale, classica bi-locale, … per 

testare indipendenza logica dei principi, mondi possibili, e regole 
generali di teoria dell’informazione (no-information without 
disturbance…) e proprietà dell’informazione e del suo processing.
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Appendix C: Comparing OPTs

QT: Quantum theory

CT: Classical theory

FQT: Fermionic quantum theory

RQT: Real quantum theory

NSQT: Number superselected quantum theory

PR: PR-boxes theory

DPR: Dual PR-boxes theory

HPR: Hybrid PR-boxes theory

FOCT: First order classical theory

FOQT: First order quantum theory

NLCT: Non-local classical theory

NLQT: Non-local quantum theory

Caus. Perf. disc. Loc. discr. n-loc. discr. At. par. comp. At. seq. comp. Compr. 9 Purification 9! Purification NIWD

QT 3 3 3 3 3 3 3 3 3 3

CT 3 3 3 3 3 3 3 7 7 7

FQT 3 3 7 3 3 3 7 3 3 3

RQT 3 3 7 3 3 3 3 3 3 3

NSQT ? ? 7 7 ? ? ? ? ? ?

PR 3 ? 3 3 3 ? 7 7 7 3

DPR 3 ? 3 3 3 ? 7 7 7 3

HPR 3 ? 3 3 3 3 3 3 3 3

FOCT 7 ? 3 3 3 ? ? 7 7 ?

FOQT 7 ? ? 3 ? ? ? ? ? ?

NLCT 3 3 7 3 7 ? 3 7 7 7

NLQT ? ? ? 3 ? ? ? ? ? ?

Table I. Comparison of known OPTs

Definition 19. A theory is no-cloning if for some state ⇢ there is no transformation C such that

C =  ⌦  , 8 2 D⇢. (C1)

Proposition 9. A theory is no-information-without-disturbance upon input of D⇢ i↵ it is no-cloning for ⇢.
• PR

• CL

• FQT
• RQT

• QT

• PR-FQT

Local discriminability

No-info w. disturbance

• CL-FQT

• Ref. [DEP]

• PR-RQT

Purification

• Algoritmi e strutture causali


Teorie di ordine superiore

QUANTUM COMPUTATIONS WITHOUT DEFINITE CAUSAL . . . PHYSICAL REVIEW A 88, 022318 (2013)

VI. REMODELING OF THE ORACLES IN ORDER
TO ALLOW FOR THE CLASSICAL SWITCH

What rule in the theory of computational circuits can be
modified in order to recover the physical implementation of
the function S(x, f , g ) of Eq. (13), whose computation is
achieved through the program SWITCH? One possibility is to
modify rule (3) and to allow for circuits containing certain
time loops. However, introducing time travels in the model
seems a rather drastic solution. A more moderate approach
is to modify rule (4): In particular, we may assume that the
resource provided by a single call to each of the two physical
oracles—that would be separately described as f and g —
in a causal succession that can be decided by the user, is
described in circuital terms as a single oracle with classical
control:

f/g g/f
,

where the wire on the bottom left denotes the control qubit,
whose general state is |ϕ⟩ = α|0⟩ + β|1⟩ with |α|2 + |β|2 = 1.
The input x is encoded on the state |ϕ⟩ as follows: For x = 0 we
prepare |ϕ⟩ = |0⟩; for x = 1 we prepare |ϕ⟩ = |1⟩. If the two
qubits on the top lines are in the states ρ1 and ρ2, respectively,
the action of the oracle is given by

Of,g(|ϕ⟩⟨ϕ| ⊗ ρ1 ⊗ ρ2) = |⟨1|ϕ⟩|2Uf ρ1U
†
f ⊗ Ugρ2U

†
g

+ |⟨0|ϕ⟩|2Ugρ1U
†
g ⊗ Uf ρ2U

†
f .

(19)

This way of representing the oracle is consistent with the
basic properties that one expects for the resource, namely
that it performs two successive transformations, one being
a call of the box f and the other a call of the box g ,
with the order of such calls being controlled by the variable x
encoded in the state |ϕ⟩. During the time interval between the
calls to the oracle, any transformation can happen, including
evolutions transforming the first output into the second input.
Exploiting the latter representation of the oracle one can clearly
implement the program SWITCH just by connecting the output
of the first box with the input of the second one and encoding
the bit x in the state |ϕ⟩ as follows:

f/g g/f
.|ϕ

If we assume that the oracle of Eq. (19) translates the resource
provided by a single use of the physical boxes corresponding
to f , g with classical control of the causal ordering, we can

then consider the function S(x, f , g ) as computable by a
quantum circuit exploiting this resource.

Such an oracle can be achieved in practice, for example, by
a physical circuit in which the connections between wires are
movable, as in Fig. 2.

Higher-order functions that transform black boxes with the
assistance of classical control on the connections are described
formally by the quantum λ calculus of Ref. [33].

|0>

f

g

|1>

f

g

FIG. 2. Quantum machine with classical control over movable
wires.

VII. A NEW RESOURCE: THE QUANTUM SWITCH
OF BOXES

While representing automated classical control of causal
sequences of operations allows one to implement the program
SWITCH within the computational circuit model, it leaves unan-
swered the question how quantum control of causal sequences
of operations can be described. We can, of course, imagine
a further generalization of the oracle, allowing for quantum
control, with the control qubit that preserves coherence and
becomes entangled with the causal ordering of boxes f and
g as follows:

f/g g/f
,

When f and g are unitary channels, the unitary channel
describing the oracle with quantum control is Wf,g(ρ) =
Wf,gρW

†
f,g , Wf,g being the control unitary

Wf,g := |0⟩⟨0| ⊗ Uf ⊗ Ug + |1⟩⟨1| ⊗ Ug ⊗ Uf . (20)

The above construction can be suitably generalized when f
and g are not unitary boxes, but noisy quantum channels:
In this case, it is enough to use the above formula to define
the Kraus operators of the channel with quantum control in
terms of the Kraus operators of the input channels. Precisely,
if the channels f and g have Kraus forms f (ρ) =

∑
i fiρf

†
i

and g(ρ) =
∑

j gjρg
†
j , respectively, then the channel with

quantum control has Kraus form

Wf,g(σ ) =
∑

i,j

Wfi,gj
σW

†
fi ,gj

,

with the Kraus operators Wfi,gj
given by

Wfi,gj
:= |0⟩⟨0| ⊗ fi ⊗ gj + |1⟩⟨1| ⊗ gj ⊗ fi.

Note that the definition of the oracle Wf,g is independent of
the Kraus forms chosen for f and g. The oracle with quantum
control is more general and more powerful than the classically
controlled one introduced in Eq. (19). Indeed, having Wf,g

available one can implement the classically controlled oracle
Of,g by using Wf,g and then discarding the control qubit.

How can we build the controlled oracle Wf,g if we have
available one use of the black boxes f and g ? Again, this is a
question that the circuit model is unable to answer. In principle,
there is no physical reason to forbid the computability of the
higher-order function defined by W : f ⊗ g $→ Wf,g . This
function is defined not only on product boxes, but also on

022318-11

…
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NANOSTRUTTURE QUANTISTICHE

• Confinamento quantico di elettroni e lacune in nanostrutture di semiconduttori, sistemi 2D, 1D, 0D 

• Proprietà ottiche e di trasporto in sistemi a bassa dimensionalità 

• Sistemi nanostrutturati di superconduttore e circuiti quantistici alle microonde 

• Applicazioni alle moderne tecnologie quantitstiche: Sorgenti a singolo fotone, laser a singolo atomo, qubits di 
semiconduttore e superconduttore

Es. Qubit a semiconduttore Es. Qubit a superconduttore 

Dario Gerace



FOTONICA

• Propagazione e confinamento di luce “classica” e “non-classica” in micro e nano strutture  

• Interazione radiazione-materia in sistemi micro e nanostrutturati (emissione spontanea, LASER, etc..) 

• Ottica nonlineare classica e quantistica 

• Applicazioni alle moderne tecnologie quantitstiche: qbit e qdit a basati su fotoni, sorgenti a singolo fotone, 
generazione di fotoni entangled,etc…

Es. Microcavità fotonica Es. Fotonica quantistica integrata

Marco Liscidini



LABORATORIO DI FISICA QUANTISTICA
Matteo Galli

• Particle Nature of Photons (Coincidences) 

• Wave Nature of Photons (Single-Photon Interference) 

• Polarization Entanglement 

• Heralding of single photons 

• Hong-Hou-Mandel Interference 

• Franson Interference



RICERCHE CONNESSE

Dario Gerace

• Simulazioni quantistiche di sistemi 
complessi: algoritmi quantistici e cloud 
quantum computing

Reti neurali  
artificiali

Molecole  
magnetiche

• Termodinamica quantistica: 
entanglement ed entropia in 
nanostrutture quantistiche

Marco Liscidini

• Fotonica quantistica in nanostrutture fotoniche: 
modellizzazione dispositivi e teoria dell’interazione 
radiazione-materia 

• Generazione di luce non classica via fluorescenza 
parametrica  

Teoria



RICERCHE CONNESSE

• Generazione di stati non classici della radiazione: sorgenti di coppie di fotoni 
entangled e singoli fotoni “heralded” integrate in silicio. 

  

• Quantum information 

• Quantum key distribution 

• Sviluppo di nuove sorgenti a singolo fotone a 1.5 mm basate su materiali 
compatibili con le tecnologie della microelettronica (quantum dots di Ge in Si)

Matteo Galli Daniele BajoniEsperimenti
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