

End of the Year Seminar

Smart BNCT Planning: When Artificial Intelligence Meets Radiobiology

Cristina Pezzi

Università degli Studi di Pavia

17th September 2025

PhD Project by Cristina Pezzi

State of Art : Boron Neutron Capture Therapy (BNCT)

PhD Project by Cristina Pezzi

State of Art : Boron Neutron Capture Therapy (BNCT)

✓ Boron-10 atoms

PhD Project by Cristina Pezzi

State of Art : Boron Neutron Capture Therapy (BNCT)

- ✓ Boron-10 atoms
- √ Thermal neutron beam

PhD Project by Cristina Pezzi

State of Art : Boron Neutron Capture Therapy (BNCT)

PhD Project by Cristina Pezzi

State of Art: Boron Neutron Capture Therapy (BNCT)

$$^{10}B(n,\alpha)^{7}Li$$

$$^{10}B + n \longrightarrow ^{11}B \longrightarrow ^{7}Li^* + ^{4}He + 2.31 \text{ MeV}$$

$$^{7}Li^* \longrightarrow ^{7}Li + \gamma + 0.478 \text{ MeV} \qquad [BR = 93.9\%]$$

$$^{10}B + n \longrightarrow ^{11}B \longrightarrow ^{7}Li + ^{4}He + 2.79 \text{ MeV} \qquad [BR = 6.1\%]$$

PhD Project by Cristina Pezzi

State of Art : Boron Neutron Capture Therapy (BNCT)

$$^{10}B(n,\alpha)^{7}Li$$

High LET radiations

PhD Project by Cristina Pezzi

State of Art : Boron Neutron Capture Therapy (BNCT)

$$^{10}B(n,\alpha)^{7}Li$$

High LET radiations

PhD Project by Cristina Pezzi

State of Art : Boron Neutron Capture Therapy (BNCT)

$$^{10}B(n,\alpha)^{7}Li$$

High LET radiations

PhD Project by Cristina Pezzi

State of Art : Boron Neutron Capture Therapy (BNCT)

- ✓ Boron-10 atoms
- √ Thermal neutron beam

Short range radiations

PhD Project by Cristina Pezzi

State of Art : Boron Neutron Capture Therapy (BNCT)

- ✓ Boron-10 atoms
- √ Thermal neutron beam

Short range radiations

PhD Project by Cristina Pezzi

State of Art: Boron Neutron Capture Therapy (BNCT)

PhD Project by Cristina Pezzi

State of Art: Boron Neutron Capture Therapy (BNCT)

PhD Project by Cristina Pezzi

State of Art : Boron Neutron Capture Therapy (BNCT)

Dosimetric Models

✓ RBE-weighted Dose Model

$$D_w = CBE \cdot D_B + RBE_{th} \cdot D_{th} + RBE_f \cdot D_f + RBE_\gamma \cdot D_\gamma$$

$$RBE_X = \frac{D_R}{D_X}$$

PhD Project by Cristina Pezzi

State of Art : Boron Neutron Capture Therapy (BNCT)

Dosimetric Models

✓ Photon Isoeffective Dose Model

$$D_R(D_1,...,D_4) = \frac{1}{2} \frac{\left(\frac{\alpha}{\beta}\right)_R}{G_R} \times \left(\sqrt{1 + \frac{4G_R}{\alpha_R \left(\frac{\alpha}{\beta}\right)_R} \left(\sum_{i=1}^4 \alpha_i D_i + \sum_{i=1}^4 \sum_{j=1}^4 G_{ij}(\theta) \sqrt{\beta_i \beta_j} D_i D_j\right)} - 1 \right)$$

The survival dose-response relationship is described by *linear quadratic model* that accounts for dose-rate dependent *sublesion repair*

Radiation synergism, the survival dose-response is modulated by Lea-Catcheside factors *G* for simultaneous mixed irradiation

PhD Project by Cristina Pezzi

State of Art: Boron Neutron Capture Therapy (BNCT)

Dosimetric Models

2D CELL CULTURE

√ Photon Isoeffective Dose Model

$$D_R(D_1, ..., D_4) = \frac{1}{2} \frac{\left(\frac{\alpha}{\beta}\right)_R}{G_R} \times \left(\sqrt{1 + \frac{4G_R}{\alpha_R \left(\frac{\alpha}{\beta}\right)_R} \left(\sum_{i=1}^4 \alpha_i D_i + \sum_{i=1}^4 \sum_{j=1}^4 G_{ij}(\theta) \sqrt{\beta_i \beta_j} D_i D_j\right)} - 1 \right)$$

How can we apply it in clinic?

PhD Project by Cristina Pezzi

PhD Project by Cristina Pezzi

State of Art : Treatment Planning System (TPS)

PhD Project by Cristina Pezzi

State of Art : Treatment Planning System (TPS)

Image Processing Region of Interest (ROI) Identification

Patient Modeling Monte Carlo Simulations

PhD Project by Cristina Pezzi

State of Art : Treatment Planning System (TPS)

Image Processing Region of Interest (ROI) Identification

Patient Modeling Monte Carlo Simulations

PhD Project by Cristina Pezzi

State of Art : Treatment Planning System (TPS)

Image Processing Region of Interest (ROI) Identification

Patient Modeling Monte Carlo Simulations

PhD Project by Cristina Pezzi

State of Art : Treatment Planning System (TPS)

Image Processing Region of Interest (ROI) Identification

Patient Modeling Monte Carlo Simulations

PhD Project by Cristina Pezzi

State of Art : Treatment Planning System (TPS)

Image Processing Region of Interest (ROI) Identification

Patient Modeling Monte Carlo Simulations

What is the State of Art of TPS?

PhD Project by Cristina Pezzi

State of Art : Treatment Planning System (TPS)

MacNCTPlan (1990, MIT - USA)

PhD Project by Cristina Pezzi

State of Art : Treatment Planning System (TPS)

MacNCTPlan (1990, MIT - USA)

Voxel size = 1 cm^3

56 materials (mixture of air, bone, normal soft tissue, tumor soft tissue)

MCNP as Monte Carlo simulation code

PhD Project by Cristina Pezzi

State of Art : Treatment Planning System (TPS)

MacNCTPlan (1990, MIT - USA)

Voxel size = 1 cm^3

TOO BIG!

56 materials (mixture of air, bone, normal soft tissue, tumor soft tissue)

BIG UNCERTAINTIES (calculation error above 20%)!

MCNP as Monte Carlo simulation code

LONG CALCULATION TIME!

PhD Project by Cristina Pezzi

State of Art : Treatment Planning System (TPS)

NCTPlan (2002, Argentina + MIT)

Superimposition of dose contours on CT images

IMPROVEMENT OF DOSE VISUALIZATION

PhD Project by Cristina Pezzi

State of Art : Treatment Planning System (TPS)

NCTPlan (2002, Argentina + MIT)

Superimposition of dose contours on CT images

IMPROVEMENT OF DOSE VISUALIZATION

PhD Project by Cristina Pezzi

State of Art : Treatment Planning System (TPS)

SERA (1999, Idaho National Engineering and Environmental Laboratory + Montana State University)

Seven modules covering processes

modeling, MC calculation, dose results visualization

PhD Project by Cristina Pezzi

State of Art : Treatment Planning System (TPS)

SERA (1999, Idaho National Engineering and Environmental Laboratory + Montana State University)

Seven modules covering processes

modeling, MC calculation, dose results visualization

PhD Project by Cristina Pezzi

State of Art : Treatment Planning System (TPS)

SERA (1999, Idaho National Engineering and Environmental Laboratory + Montana State University)

PhD Project by Cristina Pezzi

State of Art : Treatment Planning System (TPS)

SERA (1999, Idaho National Engineering and Environmental Laboratory + Montana State University)

PhD Project by Cristina Pezzi

State of Art : Treatment Planning System (TPS)

NeuMANTA (2022, China Neuboron Medical Group)

Three modules: model building, MC calculation, and dose calculation

PhD Project by Cristina Pezzi

State of Art : Treatment Planning System (TPS)

NeuMANTA (2022, China Neuboron Medical Group)

Three modules: model building, MC calculation, and dose calculation

capability to read CT, MRI and PET images (material definition)

heterogeneous boron distribution in patients through PET images

PhD Project by Cristina Pezzi

State of Art: Treatment Planning System (TPS)

NeuMANTA (2022, China Neuboron Medical Group)

Three modules: model building, MC calculation, and dose calculation

capability to read CT, MRI and PET images (material definition)

heterogeneous boron distribution in patients through PET images

self-developed MC engine COMPASS (high calculation efficiency)

PhD Project by Cristina Pezzi

State of Art : Treatment Planning System (TPS)

NeuMANTA (2022, China Neuboron Medical Group)

Three modules: model building, MC calculation, and dose calculation

capability to read CT, MRI and PET images (material definition)

heterogeneous boron distribution in patients through PET images

self-developed MC engine COMPASS (high calculation efficiency)

What Can We Add Next?

PhD Project by Cristina Pezzi

PhD Project by Cristina Pezzi

State of Art : Treatment Planning System (TPS)

Image Processing Region of Interest (ROI) Identification

Patient Modeling Monte Carlo Simulations Dosimetric Analysis

PhD Project by Cristina Pezzi

State of Art : Treatment Planning System (TPS)

Image Processing ReInter

Region of Interest (ROI) Identification

Patient Modeling Monte Carlo Simulations Dosimetric Analysis

PhD Project by Cristina Pezzi

State of Art : ROI Identification

Manual Contouring

Intra-observer variability (differences among contours delineated by a single observer on the same target volume at several different tries)

Time-consuming technique

Inter-observer variability (differences among contours delineated by multiple observers on the same target volume)

PhD Project by Cristina Pezzi

New Goal: Treatment Planning System (TPS)

Image Processing

Automatic Region of Interest (ROI) Identification

Patient Modeling Monte Carlo Simulations Dosimetric Analysis

PhD Project by Cristina Pezzi

Automatic ROI Segmentation

Contracting Path (encoder) feature extraction

Expansive Path (*decoder***)** spatially locates the features and generates an output map

GLIOBLASTOMA MULTIFORME

PhD Project by Cristina Pezzi

New Goal : Treatment Planning System (TPS)

Image Processing

Automatic Region of Interest (ROI)
Identification

Patient Modeling Monte Carlo Simulations Dosimetric Analysis

√ RBE-weighted Dose Model

 $D_w = CBE \cdot D_B + RBE_{th} \cdot D_{th} + RBE_f \cdot D_f + RBE_\gamma \cdot D_\gamma$

PhD Project by Cristina Pezzi

New Radiobiological Models

√ Photon Isoeffective Dose Model

$$D_R(D_1,...,D_4) = \frac{1}{2} \frac{\left(\frac{\alpha}{\beta}\right)_R}{G_R} \times \left(\sqrt{1 + \frac{4G_R}{\alpha_R \left(\frac{\alpha}{\beta}\right)_R} \left(\sum_{i=1}^4 \alpha_i D_i + \sum_{i=1}^4 \sum_{j=1}^4 G_{ij}(\theta) \sqrt{\beta_i \beta_j} D_i D_j \right)} - 1 \right)$$

3D SPHEROIDS

PhD Project by Cristina Pezzi

New Goal: Treatment Planning System (TPS)

Image Processing

Automatic Region of Interest (ROI) Identification

Patient Modeling Monte Carlo Simulations Advanced Dosimetric Analysis

PhD Project by Cristina Pezzi

New Goal: Treatment Planning System (TPS)

PhD Project by Cristina Pezzi

New Goal: Treatment Planning System (TPS)

Image Processing Automatic Region of Interest (ROI) Identification

Patient Modeling Monte Carlo Simulations Advanced Dosimetric Analysis

√ Patient Positioning

PhD Project by Cristina Pezzi

New Goal : Treatment Planning System (TPS)

Image Processing Automatic Region of Interest (ROI) Identification

Patient Modeling Monte Carlo Simulations Advanced Dosimetric Analysis

✓ Automatic Patient Positioning

PhD Project by Cristina Pezzi

Feseability

Experimental Activities

Neutron irradiation facility @TRIGA Mark II reactor and fully equipped biology laboratories

Collaborations

INFN projects (AI_MIGHT and IT_STARTS) and international collaborations (Argentina, China, Taiwan, France, Finland, Spain groups)

PhD Project by Cristina Pezzi

Feseability

Experimental Activities

Neutron irradiation facility @TRIGA Mark II reactor and fully equipped biology laboratories

Collaborations

INFN projects (AI_MIGHT and IT_STARTS) and international collaborations (Argentina, China, Taiwan, France, Finland, Spain groups)

Impact

End of the Year Seminar

Thanks for the Attention

Cristina Pezzi

Università degli Studi di Pavia

17th September 2025