Peering into the proton: Insights from Theory

Alessio Carmelo Alvaro, XXXIX Cicle End of year seminars, University of Pavia Supervisors: Barbara Pasquini, Simone Rodini

Quark model (1964)

Today

Open problems

Can we build maps of the internal structure of the proton?

How do the global properties (mass, spin) of the proton emerge from its elementary constituents?

Different tools to unveil proton structure

A mixed problem

We cannot (completely) predict these maps from theory!

My projects

My projects

Physical intuition

Collinear kinematic \longleftrightarrow Integration over k_{\perp} transverse kinematic?

Physical intuition

Collinear kinematic \longleftrightarrow Integration over k_{\perp} transverse kinematic? "Yes" \Longrightarrow Relation between TMDs and PDFs

Physical intuition

Collinear kinematic \longleftrightarrow Integration over k_{\perp} transverse kinematic? "Yes" \Longrightarrow Relation between TMDs and PDFs

Simple ansatz:
$$\int dk_{\perp} TMD(x,k_{\perp}) = PDF(x)$$
 Too simple

$$TMD_{i}(x, k_{\perp}) = \sum_{j} C_{ij}(x, k_{\perp}) \otimes PDF_{j}(x) + O\left(\frac{M^{2}}{k_{\perp}^{2}}\right)$$

$$TMD_{i}(x, k_{\perp}) = \sum_{j} C_{ij}(x, k_{\perp}) \otimes PDF_{j}(x) + O\left(\frac{M^{2}}{k_{\perp}^{2}}\right)$$

Why? Some PDFs are very well known

$$TMD_{i}(x, k_{\perp}) = \sum_{j} C_{ij}(x, k_{\perp}) \otimes PDF_{j}(x) + O\left(\frac{M^{2}}{k_{\perp}^{2}}\right)$$

Why? Some PDFs are very well known

Prediction of physical observables

$$TMD_{i}(x, k_{\perp}) = \sum_{j} C_{ij}(x, k_{\perp}) \otimes PDF_{j}(x) + O\left(\frac{M^{2}}{k_{\perp}^{2}}\right)$$

Why? Some PDFs are very well known

Prediction of physical observables

Constraints to TMDs expression (toward TMD fit)

Matching relations: current status

Distribution	Tw2	Tw3	Accuracy
f_1^g	f_g	_	N^3LO
$h_1^{\perp g}$	f_g	_	$ m N^3LO$
$egin{array}{c} g_{1L}^g \ g_{1T}^g \end{array}$	Δf_g		N^3LO
g_{1T}^g			
$f_{1T}^{\perp g}$	_		
h_{1T}^g	_		
$h_{1L}^{\perp g}$			
$h_{1T}^{g} \ h_{1L}^{\perp g} \ h_{1T}^{\perp g}$			

Dash: no matching

Blank space: unknown

Matching relations: my results

Distribution	Tw2	Tw3	Accuracy
f_1^g	f_g	_	N^3LO
$h_1^{\perp g}$	f_g	_	N^3LO
g_{1L}^g	Δf_g		N^3LO
$g_{1T}^{ar{g}}$			LO
$f_{1T}^{\perp g}$	_		LO
$h_{1T}^{\overline{g}}$	_		LO
$h_{1T}^{\overline{g}} \ h_{1L}^{\perp g}$			LO
$h_{1T}^{\perp g}$			LO

Tree level: filled all the gaps

+ all mass corrections

Plan: g_{1T}^g at Tw2-NLO

+ phenomenology

The trace anomaly and the mass Where does all the proton mass come from?

The mass problem

The mass problem

The Trace Anomaly

Mechanical properties of a system: $T^{\mu
u}$

The Trace Anomaly

Mechanical properties of a system: $T^{\mu
u}$

'Classical': $T^{\mu}_{\mu}=m\bar{\psi}\psi$

The Trace Anomaly

Mechanical properties of a system: $T^{\mu\nu}$

'Classical':
$$T^{\mu}_{\mu}=m\bar{\psi}\psi$$

After renormalization:

$$T^{\mu}_{\mu} = m\bar{\psi}\psi + \gamma_{m}m\bar{\psi}\psi + \frac{\beta(g)}{2g}F_{\alpha\beta}F^{\alpha\beta}$$

'Classical' term Anomaly term

Deep Virtual Compton Scattering

EMT $T^{\mu\nu} \iff GPDs(x, b_{\perp})$

GPDs are measured in $lp \rightarrow l'p'\gamma$

Deep Virtual Compton Scattering

EMT $T^{\mu\nu} \iff GPDs(x, b_{\perp})$

GPDs are measured in $lp \rightarrow l'p'\gamma$

Deep Virtual Compton Scattering

EMT $T^{\mu\nu} \iff \text{GPDs}(x, b_{\perp})$

GPDs are measured in $lp \rightarrow l'p'\gamma$

My work

Perturbative computation of the GPDs

Trace anomaly in terms of GPDs

Plan: different regulators + gluon GPDs

Conclusions

TMDs and PDFs are connected

Conclusions

TMDs and PDFs are connected

Proton mass and trace anomaly