

Congresso di Dipartimento e della Sezione INFN di Pavia

Contribution ID: 61

Type: not specified

Tracing the footprints of radiation: temporal and spatial patterns of γ H2AX signaling in different human cells after exposure to X-rays and UV-C light

Ionizing radiation (IR) is an excellent probe to elicit a biological response and study the molecular mechanisms of DNA damage and repair in human cells, with implications in radiation protection and optimization of its medical use. This work focuses on γ H2AX, a widely-used DNA damage marker, analyzing its induction, kinetics, and persistence in three cell lines with different radiosensitivity, after exposure to X-rays and near-ionizing UV-C light. Combining fluorescence microscopy, flow cytometry, and clonogenic survival assays, we provide a detailed characterization of the spatial and temporal dynamics of γ H2AX signaling and its relationship with cell viability, cell cycle phase and long-term survival. Cell-line specific responses are found, highlighting the importance of accounting for cellular phenotype and DNA repair proficiency when interpreting γ H2AX-based assays. These insights may guide improved experimental design and interpretation in radiation biology studies, both for basic and translational research.

Primary author: GUARDAMAGNA, ISABELLA

Co-authors: LONATI, LEONARDO; Dr IARIA, Ombretta; Dr MENTANA, Alice; Dr PARODI, Daniele; Dr PETERLIN, Giulia; SEMERANO, ROSELLA; RIANI, CECILIA; GONON, GERALDINE; Dr PREVITALI, Andrea; Dr TRICARICO, Anna; Dr TABARELLI DI FATIS, Paola; Dr IVALDI, Giovanni Battista; Dr PERUCCA, Paola; Prof. CAZZALINI, Ornella; BAIOCCO, GIORGIO

Presenter: GUARDAMAGNA, ISABELLA

Session Classification: Caffè e poster (dal N. 9 al N. 51)