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Basic accelerator concepts
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Lorentz force

Newton-lorentz force describes the interaction of charged particles
with electro-magnetic fields:

Particle
. Instantaneous
Particle charge Electric field velocity Magnetic field
—
F = =e(E + v X B)

dt S

Longitudinal Motion Transverse Motion
Parallel to the direction of motion. Perpendicular to the direction of
Used to accelerate charged particles. motion.

Used to keep circulating orbit and
beam steering.



Acceleration

Acceleration has to be done by an electric field in the direction of the motion

i

Radiofrequency Cavity
vité radiotréequer

Apply an E-field which is reversed while the particle travels inside the tube.

Build the acceleration with one or more series of drift tubes with gaps in
between them.



Transverse Motion: trajectory

In order to keep circular trajectory, Lorentz force should compensate the centrifugal force
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Transverse Motion: trajectory




Transverse Motion: trajectory




gt (16 Raﬁ;f(:)‘frequehcy'cavities at 400 MHz
1232 Superconductive Nb-Ti magnets at 1.9 K,
generating a magnetic held of 8.33 T
Proton-proton ;éol’ii.éidn at 14 TeV until 2040
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The Future Circular Collider (FCC)

FCC Nominal dipole field (NbzSn) 16.11 T

50000 GeV/c 0.65 X 100 Km
BT ——————— = 16.11T P~ 104 Kmy — - —
0.3 x 10.4 Km o




Proton-proton collision
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Electron-positron collision

The 2013 Update of the European Strategy for Particle Physics (ESPPU) [1] stated,
inter alia, that “... Furope needs to be in a position to propose an ambitious post-
LHC' accelerator project at CERN by the time of the next Strategy update” and
that “CERN should undertake design studies for accelerator projects in a global
context, with emphasis on|proton-proton |and |electron-positron|high-energy frontier
machines. These design studies should be coupled to a vigorous accelerator RED
programme, including high-field magnets and high-gradient accelerating structures,
in collaboration with national institutes, laboratories and universities worldwide” .

In response to this recommendation, the Future Circular Collider (FCC) study
was launched [2]| as a world-wide international collaboration under the auspices of
the European Committee for Future Accelerators (ECFA). The FCC study was
mandated to deliver a Conceptual Design Report (CDR) in time for the following
update of the European Strategy for Particle Physics.

European studies of post-LHC circular energy-frontier accelerators at CERN had
actually started a few years earlier, in 2010-2013, for both hadron [3-5] and lep-
ton colliders [6-8], at the time called HE-LHC/VHE-LHC and LEP3/DLEP/TLEP,
respectively. In response to the 2013 ESPPU, in early 2014 these efforts were com-
bined and expanded into the FCC study.

The 2013 ESPPU recognised the importance of electron-positron colliders for the
precise measurement of the properties of the Higgs boson. Since its inception, the
international FCC collaboration has worked on delivering the conceptual design for
a staged ete™ collider (FCC-ee) that would allow detailed studies of the heaviest
known particles (Z, W and H bosons and the top quark) and offer great direct and
indirect sensitivity to new physics.

Five years of intense work and a steadily growing international collaboration
have resulted in the present Conceptual Design Report, consisting of four volumes
covering the physics opportunities, technical challenges, cost and schedule of several
different circular colliders, some of which could be part of an integrated programme
extending until the end of the 215 century.

Geneva, December 2018
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Rolf Heuer Fabiola Gianotti
CERN Director-General 2009-2015 CERN Director-General since 2016
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Accelerating electrons (positrons)

e-
lB Energy loss by synchrotron radiation of
charged particles bent by a magnetic field
4
AE = X :
hot = | — —
photon - »

Electron mass me: 0.5 MeV Proton mass ~2000 m. Muon mass ~200 me

2.75 GeV/turn lost at Energy loss reduced Energy loss reduced
LEP for E = 105 GeV by a factor by a factor
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Linear e+e- collider

VT e ~|
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| International Linear Collider (ILC):
| Japan (Kitakami)

e*e’, Vs: 250 - 500 GeV (1 TeV)
Length: 17 km, 31 km (50 km)

. Niobium

- ~1m .
IL.C accelerator unit:

9 cells niobium cavities oscillating at 1.3 GHz
with an average accelerating gradient of 31.5 MV/m
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International linear collider (ILC)

wae

ILC colliding e+e- at 500 GeV,

main Linac accelerates electrons (positrons) from 15 GeV to 250 GeV:

ILC at 500 GeV
2 % 235[GeV1]/31.5[MeV/m] ~ 15 K X2
% [GeV [MeV/m] n " is 31 Km long

100[TeV]/31.5[MeV/m] > 3000 Km , we cannot have a linear
proton-proton collider
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Linear vs. circular e+*e- colliders

The collider luminosity 1s the proportionality factor between the number
of events per second and the cross section
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Japan

China

CERN

Possible scenarios of future colliders

=

B Proton collider W= Construction/Transformation: heights of box construction cost/year
B  Electron collider

1 Electron-Proton collider

Preparation

ILC: 250 GeV

4 years 20km tunnel [SRNISI
31km tunnel 40 km tunnel
CepC: 90/160/240 GeV
100km tunnel [EFFERFISEENE

CLIC: 380 GeV
11 km tunnel 1.5 abl

5 years

29 km tunnel 50 km tunnel

?1>570-?;55 GeV FCC hh: 150 TeV =20-30 ab™
.7 ab?

100km tunnel [SEaER SNSRI

GeV -150/10/5 ab?!

8 years

FCC hh: 100 TeV 20-30 ab™

FCC hh: 100 TeV 20-30 ab
8 years 100km tunnel

HL-LHC: 13 TeV 3-4 ab! HE-LHC: 27 TeV 10 ab!

LHeC: 1.2TeV FCC-eh: 3.5 TeV 2 ab'1
2 years 7 B/ 6ye ©
1. / a 0.25-1 ab-l

N T T 1 1 T
2020 2030 2040 2050 2060 2070 2080 2090

Fine degli esperimenti ad LHC 15



How far can it go?
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Colliding muons?
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v .. e |- e |- : ‘ muons at higher energies in circular
g 12 w 112 3 12 8 1 ! COllideI‘S
S down | strange ) bottom photon J
0.511 MeV/c* 105.7 MeVic* 1.777 GeV/c* 91.2 GeV/c*
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® A 14 TeV muon collider can be
housed in the 27 Km LHC tunnel

— no need to drill half Europe!
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Where are the muons?
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Everything starts from an
hydrogen source...

Mock-up of Duoplasma“’ron
source

...but there is no muon source
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The LEMMA Project

Low EMmittance Muon Positron Linac |Positron Acceleration Collider Ring
Accelerator (LEMMA): Ring
10" p pairs/sec from
e*e” interactions. The small
production emittance allows lower e
overall charge in the collider rings Positron Linac
— hence, lower backgroundsin a
collider detector and a higher
potential CoM energy due to

neutrino radiation.

ECoM:

10s of TeV

100 KW
target
=
Isochronous
Rings

Accelerators:
Linacs, RLA or FFAG, RCS

In the LEMMA scheme 45 GeV positrons annihilate with the electrons of a beryllium

target: a beam of muons and antimuons with collimated energy and emission angle can
be obtained.
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Novel proposal for a low emittance muon beam using positron beam on target, arXiv:1509.04454v1
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The particle

S€ad...

A selection of particles
listed by the particle
data group.

How can we tell them
apart in our detector ?!
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The particle sea...

Out of ~ 400 particles only ~ 20 have a
ct > 500 um

by far the most relevant are:
e+_9 /’l+_, }/7 7T+_, k+_9 KS(,), KL09p+_

I I
Om m
Key:
Muon
Electron
Charged Hadron (e.g. Pion)
— — — - Neutral Hadron (e.g. Neutron)
''''' Photon
4T
"ig—i*
=3 — l l ,’ |
!
/] ! I// /l | |
3 ) l ! '." ]
Silicon & ‘ I—'I‘?‘
Tracker X 7 :
l - Electromagnetic /// / /; ///
i) ]“ Calorimeter /7 /
/ / // 744
Hadron Superconducting
Calorimeter Solenoid

Iron return yoke interspersed

Transverse slice with Muon chambers

through CMS

A particle detector is an (almost) irreducible representation
of the properties of these particles.

D Bamaey, CERN, Febriwwry 2004
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Dual read-out calorimetry

Calorimeters are particle detectors used to reconstruct particle energies by means of total

absorption.
| ABSORBER e B Showers induced by hadrons are made of two
5 ] m
g } component ~components:
i Em component: electrons, positrons and photons
1 n v
"'E ; /\’(.)H‘C”I (from 7[0 — 7/}/ decays).
: A~ .| componen
E A | e WGl fragment Non-em component: charged hadrons, neutrons,

invisible energy.
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Dual read-out calorimeters

Proudly made at University of Pavia and INFN Sezione di Pavia
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What next for particle physics?

HEP before the LHC

SUSY, etc.

Higgs :
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What next for particle physics?

HEP after the LHC

FCC? CLIC? ILC? Muon CEPC/SPPC?
collider?




Backup



Plasma Wakefield
°?° o ’
0°0°0

Example: Single ionized rubidium plasma

What is a plasma?
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=== === * Plasma e- are expelled by space

PoA b oA b 4 charge force
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T T T
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Plasma wavelength ~1 mm 29



Plasma Wakehield Acceleration (PWFA)

—= 4= Accelerating for e
N S T =) Decelerating for e
+ - +
+ % + H Focusing for e-
+ 4 +
T l Defocusing for e-
E, mad O

Accelerating

..................................................................................................

v

v

0 T 21
How strong can the fields be? Eyp = 96— 3
m cm—

Example: n , = 7x1014 cm-3 (AWAKE) = Eyp = 2.5 GV/m
Example: n . = 7x1017 cm3 > Eyp = 80 GV/m 20




AWAKE (CERN)
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Proton beam - A E. Adli et al. (AWAKE Collaboration), Ny, /10cm™

‘ OTR, CTR screens Nature 561, 363-367 (2018)
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- « Quadrupoles
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Electron
spectrometer

AWAKE has demonstrated during Run 1

(2016-2018) that electrons can be Lacer
accelerated to 2 GeV in 10 m using the dump  Imaging
CERN SPS 400 GeV proton beams. Saton 2
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