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First-principles electronic structure calculations
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Battery revolution to evolution

The revolutionary work of John Goodenough, M. Stanley Whittingham and Akira Yoshino has finally been awarded
the Nobel Prize in Chemistry. Scientific discovery and engineering brilliance continue to shape battery technology.

Nature Energy 4, 893 (2019)
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“for the development of lithium-ion batteries”

They created a rechargeable world

The Nobel Prize in Chemistry 2019 rewards the
development of the lithium-ion battery. This light-
weight, rechargeable and powerful battery is now
used in everything from mobile phones to laptops
and electric vehicles. It can also store significant
amounts of energy from solar and wind power,
making possible a fossil fuel-free society.
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A rechargeable world
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They created a rechargeable world
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How do Li-ion batteries work?

Galvanic/Voltaic cell: the driving force is
the difference between the electrode
potentials (~ the two metals work functions).

(a)
a
e

Cathode

1 M solution of 1 M solution of
ilver nitrate

copper (I} nitrate silver nitra
(Cu(NO3),) (AgNO3)

Rechargeable Li-ion battery: the i b ©“..‘“
driving force is the chemical potential )( .‘ }(’ \)
difference for Li between electrodes. =i=7 \\~
Li ions shuttle between anode and \ \' I‘
thod IOy
cathodes. N PR RY; _L
2/S “F"\

Good cathodes should be able to - g coe

reversibly absorb and release Li ions cvcuren B ¢ o i iii oot
Li Solvent J Collector

for many cycles collector Graphene s
structure LiMO; layer

structure
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Where does energy come from?

cathode anode

5% — ML
vy = K

In practice, given a system X able to intercalate various amounts of Li
(X --> LiX) from a pure Li reference anode, one has:

E(LiX) — BE(X) — E(Lime:)

€

V) =
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Where does energy come from?

Example: LixCoO;

Voltage: broadly associated with red-ox potential of TM ions
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Some typical cathode materials

o

LiMO; layered oxide LiMPO4 olivine phosphate LiM,O4 spinel

General requirements: (M = metal)
Intercalate large amounts of Li (energy density/capacity)
High Li+ and e- mobility (power density)
Retain structure with low damage rate and low volume change (cyclability)
High binding energy for Li+ and electron (high voltage)

Avoid parasitic reactions, decompositions and oxygen release (safety)
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Importance of calculations

Structural analysis (e.g. interface strain, etc)

Charge localization, conduction properties and magnetism

Relative stability of various phases and Li concentrations (phase diagram)
F.E. = E(Li,Sys) — xE(LiSys) — (1 — x)E(Sys)

Performance of the battery

Average voltage

E(Liy,Sys) — E(Lig, Sys) — (x2 — x1) E(Lipyuik)

<V>$1,35'2 — (372 - 331)6
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Density-functional theory

Main advantage of DFT:

U(ry,ro,r3,.....,rn)

N-electrons wavefunction

l

p(r)

electronic charge density

Energy minimization:

Ground state total energy
and density

The father: W. Kohn
1998 Nobel Laureate
in Chemistry for
developing DFT

(mid 1960’s)

Total energy derivatives (forces,
- stresses, etc)

DFT is formally exact but approximations are used in all
current implementations



Understand, predict, design

Understand, predict, and design complex materials with first-principles
electronic-structure simulations

e Bulk (skutterudites) and nanostructured thermoelectrics (Bosch)
e Ageing of niobium-tin superconductors (ARO)

e Organic photovoltaics (ENI)

e Solar fuels (via first-principles EPR) (DOE)

e Lead-free piezoelectrics (Bosch)

e Electrochemical reactions in PEM fuel cells/batteries (NSF)

e Nanoparticles’ catalytic activity, stability (NSF)

e Carbon nanomaterials (Darpa)

e lonic transport in solid state electrolytes (NIMS)

e Viscosity and conductivity of ionic liquids (DuPont)

e Methane catalysis (including biomimetic) (DOE)

e Hydrogen storage materials (DOE)

* Novel dielectrics (Intel)

e Decoding the structure of concrete via NMR (Portland Association)
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DFT: aims and capabilities

DFT is a ground state theory and is excellent to evaluate

total energies and energy differences

® magnetic, electronic, structural properties and phase stability (ambient to extreme
conditions)

® phase transitions

e vibrational properties (harmonic and anharmonic), Raman and IR spectra, P-T free
energies

e finite-temperature elastic constants
e electrical and thermal conductivity
e molecular dynamics and metadynamics

e orbital and magnetic ordering; magneto-structural couplings
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Car-Parrinello molecular dynamics

Squeezing bucky-diamonds

(looking for stress-induced
Catalysis (video courtesy of N. Marzari) plastic deformations)
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Water and (the color of) wine

From time-dependent DFT (TDDFT)

(a)

HQ

benzopyrylium

HO

J}f“&f e

O. B. Malcioglu et al. JACS 133, 15425 (2011)

dyes of the family of cyanines are The solvent (water) is fundamental to
responsible for the purple color (and the  determine the thermal fluctuations that
antioxidant properties) (on average) give cyanine dyes their color



Deep inside our Earth

MAGHETIC LENE OF FORCE

Macramic poRTH PO

Internal structure and major constituent minerals of the earth

Post- perovskite
(Cmcm)

[\ Structural, magnetic and electronic
=y properties of minerals at highPand T
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Approximate DFT: difficulties

Unfortunately the exact energy functional is not known and approximations are needed

Notable failures: molecular dissociations (e.g. H»):

equal probablllty
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Approximate DFT: difficulties

Unfortunately the exact energy functional is not known and approximations are needed

Notable failures: molecular dissociations (e.g. H»):

equal probability

~
2]
@)

/
Exact: T ‘L ml (rﬁ\ or /\ Iﬂ
/o\/o\ > Je\ /e 0

The curvature of the energy is exaggerated

DFT:
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LiCoPOg: e localization and energetics

Lio_5COPO4

LiCoPO4 LiosCoPO4 CoPOq4 FE. Voltage

Co2+ Co2+ Co3+t Co3+ meV/FU \/

DFT 7.35 7.17 7.16 7.06 -137 3.47




Getting rid of curvature
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Getting rid of curvature

UI
Eeract = Eprr + Z? Z [nfgm’(émm’ _nfgm’)] — EDFT—l—U

en+2)  The (approximate) DFT energy has an

unphysical curvature

The exact solution is piecewise linear

Total energy

+U correction reproduces the exact
solution

N-1 N N+ 1 Ne2
Number of electrons
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DFT+U: correcting DFT with the Hubbard model

Interface this model with DFT energy:

Eprr [p(r)] + Z U?T"“ n'? (1-n'7)]

The Hubbard correction acts selectively on localized states

ple = Zfz (W |pr (DL, [T




Electron localization and magnetism



Electron localization and magnetism




Electron localization and magnetism
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LiCoPOg: e localization and energetics

Occupations of Co ions from projecting the occupied manifold on
atomic orbitals (Lowdin charges)

LiCoPO4 LiosCoPO4 CoPOq4 FE. Voltage
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LiMnPOgs: e localization and energetics

Occupations of Mn ions from atomic orbital projections

LiMnPO4 Lio sMnPO4 MnPO4

Mn 2+ Mn 2+ Mn 3+ Mn 3+
DFT 5.30 5.19 5.17 5.11
DFT+U 5.19 5.1 5.05 4.96

F. E. (meV/FU) Voltage (V)

Exp >0 ~ 4.1
DFT 63 2.82
DFT+U 212 431




Localization and covalency: DFT+U+V
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Localization and covalency: DFT+U+V
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Localization and covalency: DFT+U+V

U V
A Pty Ny
o O e e e o6 o o o
< d —

The same interface procedure with DFT now originates the DFT+U+V functional

(7 U[ - VIJ ™
Eprrivyvip(r)] = EDFT[p(r)]+-Z 7T'r [nI" (1 - nI")] - TTT [n”"n“"]
gag p d,J,0 y

DFT+U+V captures electronic localization even in presence of hybridization

V. L. Campo Jr and M. Cococcioni, J. Phys.: Condens Matter 22, 055602 (2010)
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LiMnPOgs: e localization and energetics

Occupations of Mn ions from atomic orbital projections

LiMnPOy4 LiosMnPOy4 MnPO4
Mn 2+ Mn 2+ Mn 3+ Mn 3+
DFT 5.30 5.19 5.17 5.11
DFT+U 5.19 5.11 5.05 4.96
DFT+U+V (5.23 5.22) (4.99 4.99)

F E. (meV/FU) Voltage (V)

Exp >0
DFT 63 2.82
DFT+U 212 431

DFT+U+V 206

M. Cococcioni and N. Marzari, Phys. Rev. Mater. 3, 033801 (2019)




LiFePOg4: e localization and energetics

Occupations of Fe ions from atomic orbital projections

LiFePO4 LiosFePOy4 FePO
Fe 2+ Fe 2+ Fe 3+ Fe 3+

DFT 6.22 6.1 6.08 5.93
DFT+U (6.19 6.19) (5.68 5.65)

DFT+U+V (6.22 6.22) (5.77 5.76)




LiFePOg4: e localization and energetics

Occupations of Fe ions from atomic orbital projections

LiFePO4 Lio.sFePO4 FePO4
Fe 2+ Fe 2+ Fe 3+ Fe 3+
DFT 6.22 6.11 6.08 5.93
DFT+U (6.19 6.19) (5.68 5.65)
DFT+U+V (6.22 6.22) (5.77 5.76)
Method F E. (meV/FU) Voltage (V)
Exp >0
DFT -126 2.73
DFT+U 159 4.06
DFT+U+V 128

M. Cococcioni and N. Marzari, Phys. Rev. Mater. 3, 033801 (2019)



Other systems under study

LiCOz P3010

Lio.75C02P3010



LiNiPO4 : electron localization and voltage

LiNiPO4 NiPO4 Voltage

Ol O2 O3 Ol O2 O3 \'%
Exp 5.1

DFT 4.92 4.92 4.86 4.85 4.87 4.79 3.85
DFT+U+V | 4.94 4.95 491 4.84 481 4.85 5.33
DFT+U*+V| 4.94 4.94 491 4.97 4.48 4.92 481




LiNiPO4 : electron localization and voltage

LiNiPO4 NiPO4 Voltage

Ol O2 O3 Ol O2 O3 \'%

Exp 5.1
DFT 4.92 4.92 4.86 4.85 4.87 4.79 3.85

DFT+U+V | 4.94 4.95 491 4.84 481 4.85 5.33

DFT+U*+V| 494 | 494 | 491 | 497 492 | 48l

Li vacancies leave holes
in the p states of the O
ions closest to the vacant
site.

These O also develop a
finite magnetization




Higher voltage/capacity materials?



Higher voltage/capacity materials?

Fluoro-sulphates
or phosphates
Higher voltage . A
from F electronegativi\ﬁ/a

LiFeSO4F



Higher voltage/capacity materials?

R

(a) Pmn2 -1 a'l—tl (c) Pmnb
(b) Pmn2, (d) P2,/n
Ortho-silicates: LioMSiO4 Fluoro-sulphates

or phosphates
Higher voltage ¥ b
from F electronegativity’

Higher voltage: M?* to M**

LiFeSO4F



Under development



Under development

NaFeFs for Na-ion batteries

(with C. Tealdi, E. Quartarone,
@ Chemistry)



Under development

Fe-based superconductors,

orbital-dependent physics

@ Chemistry)

NaFeFs for Na-ion batteries



Other systems of interest



- Other systems of interest

Perovskites and other complex oxides

coupled electronic, magnetic, structural transitions,
multiferroics, spintronics, photonics, functional materials
E.g. nickelates, manganites




- Other systems of interest

Perovskites and other complex oxides

coupled electronic, magnetic, structural transitions,
multiferroics, spintronics, photonics, functional materials
E.g. nickelates, manganites

°c00
P

2D Quasi-2D 3D

Fig. 1 Crystal structure of 3D (a) and hybrid (2D - 3D) perovskites
(b) with various thicknesses of the inorganic layers. Adapted from
G. Grancini and M. K. Nazeeruddin, Nat. Rev. Mater. 4, 4 (2019)



- Other systems of interest

Perovskites and other complex oxides

coupled electronic, magnetic, structural transitions,
multiferroics, spintronics, photonics, functional materials
E.g. nickelates, manganites

a ABX,

°c00
P

catalysts for water photolysis

(a) i (b) (-) 4 H
8 CB -8 2H* 6 e L1+
- 4 T 5 H*/H,
) 0_-[;1,2,]_-].2_-_1__--__- B HYH, e =
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5 0,/H,0 5 - hy
- = h*
= +2 . Z OJH,0 2.2 A \NN LU —
= 0,+4H E(1.23V) H, evolution
2D Quasi-2D 5 +3 i ve| bt photocatalyst
2 4V VB h* 2H,0 = (+) o luti
. . . - 5 evolulion
Fig. 1 Crystal structure of 3D (a) and hybrid (2D - 3D) perovskites photocatalyst S S———

(b) with various thicknesses of the inorganic layers. Adapted from
G. Grancini and M. K. Nazeeruddin, Nat. Rev. Mater. 4, 4 (2019)



Other projects and collaborations

Theory: developing better functionals and
interface with existing algorithms (e.g., for
transport properties, Raman, XAS, el-ph,
excitations)

Other materials for Li- and Na-ion batteries

Layered perovskites for photovoltaics

Minerals of inner Earth and their thermoelastic
properties

Complex oxides (e.g., multiferroics, photocatalysts)

High Tc superconductors
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