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consider the following scenario. With a probability of
1
3

the preparer prepares one of the states jfa� ⇥a � 1, 2, 3⇤
which corresponds to equally spaced linearly polarized

states at 0±, 120±, and 2120±. He then gives this state

to Alice (without telling her which one it is). Alice makes

a measurement on it in an attempt to gain some informa-

tion about the state. The most general measurement she

can make is a positive operator valued measure [6]. She

will never obtain more information if some of the posi-

tive operators are not of rank one, and thus we can take

them all to be of rank one, that is proportional to projec-

tion operators. Let Alice’s measurement have L outcomes
labeled l � 1, 2, . . . , L and let the positive operator asso-
ciated with outcome l be j´l� ⌅´l j. We require that

LX

l�1
j´l� ⌅´lj � I . (1)

Note that, in general, the states j´l� are neither orthogonal
to each other or normalized but rather form an overcom-

plete basis set. The probability of getting outcome l given
that the state prepared is jfa� is j⌅faj´l�j2. Alice sends
the information l to Bob over the classical channel and Bob
prepares a state jfc

l � (the c denotes that the state has been
“classically teleported”). This state is chosen so as to give

the best chance of passing a test for the original state. Bob

now passes this state onto a verifier. We suppose that the

preparer has told the verifier which state he prepared and

the verifier sets his apparatus to measure the projection op-

erator, jfa� ⌅faj, onto this state. The probability that the
classically teleported state will pass the test in this case is

j⌅fajfc
l �j2. The average probability S of passing the test

S �
X

a,l

1
3 j⌅fajfc

l �j2 j⌅faj´l�j2. (2)

In the Appendix we show that this classical teleportation

protocol must satisfy

S #
3
4 . (3)

To show that we have quantum teleportation we must show

that the experimental results violate this inequality [7].

The experiment is shown in Fig. 1. Pairs of polariza-

tion entangled photons are created directly using type-II

degenerate parametric down-conversion by the method

described in Refs. [8,9]. The b-barium borate (BBO)

crystal is pumped by a 200 mW UV cw argon laser with

wavelength 351.1 nm. The down-converted photons have

a wavelength of 702.2 nm. The state of the photons at

this stage is
1p
2
⇥jy�1jh�2 1 jh�1jy�2⇤. However, we want

a k-vector entangled state so next we let each photon pass
through a calcite crystal (C), after which the state becomes

1p
2

⇥ja1� ja2� 1 jb1� jb2�⇤ jy�1jh�2 . (4)

By this method a polarization entangled state has been

converted into a k-vector entangled state. Here, ja1� jy�1,

FIG. 1. Diagram of experimental setup showing the separate
roles of the preparer, Alice, and Bob.

for example, represents the state of photon 1 in path a1
and having vertical polarization. Since each photon has

the same polarization in each of the two paths it can take,

the polarization part of the state factors out of the k-
vector entanglement. The EPR pair for the teleportation

procedure is provided by this k-vector entanglement.
By means of (zero order) quarter-wave plates oriented

at some angle g to the horizontal and Fresnel rhomb

polarization rotators (R) acting in the same way on paths

a1 and b1 as shown in Fig. 1, the polarization degree of

freedom of photon 1 is used by the preparer to prepare the

general state: jf� � ajy�1 1 bjh�1. This is the state to

be teleported. The state of the whole system is now

1p
2

⇥ja1� ja2� 1 jb1� jb2�⇤ ⇥ajy�1 1 bjh�1⇤ jh�2 . (5)

We now introduce four orthonormal states which are

directly analogous to the Bell states considered in [1]:

jc6� �
1p
2

⇥ja1� jy�1 6 jb1� jh�1⇤ , (6)

jd6� �
1p
2

⇥ja1� jh�1 6 jb1� jy�1⇤ . (7)

We can rewrite (5) by using these states as a basis:

1
2 jc1� ⇥aja2� 1 bjb2�⇤ jh�2 1

1
2 jc2� ⇥aja2� 2 bjb2�⇤ jh�2

1
1
2 jd1� ⇥bja2� 1 ajb2�⇤ jh�2

1
1
2 jd2� ⇥bja2� 2 ajb2�⇤ jh�2 . (8)

For Alice, it is simply a question of measuring on the basis

jc6�, jd6�. To do this we first rotate the polarization of
path b1 by a further 90

± (in the actual experiment this was
done by setting the angle of the Fresnel rhomb in path b1
at u 1 90± rather than by using a separate plate as shown

1122
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In spring 1952, as John Wheeler neared the end of design
work for the first thermonuclear explosion, he plotted a rad-
ical change of research direction: from particles and atomic
nuclei to general relativity.

With only one quantitative observational contact (the
perihelion shift of Mercury) and two qualitative ones (the
 expansion of the universe and gravitational light deflection)
general relativity in the early 1950s had become a backwater
of physics. It was more a branch of mathematics than of
physics, and a not very interesting one. Among the world’s
leading physicists at the time, only Wheeler envisioned a
 future in which curved spacetime would be fundamental to
the nature of matter and the astrophysical universe. Because,
in his words, “relativity is too important to leave to the math-
ematicians,” Wheeler set out to discover its roles. Through
that quest, over the subsequent two decades, he, his students,
and their intellectual descendants would revitalize general
relativity and make it an exciting field for other researchers.

“If you would learn, teach!” was one of Wheeler’s fa-
vorite aphorisms (figure 1). So as the first step in his quest,
he taught a course in relativity at Princeton University—the
first such course since 1941. In his 1952–53 course, he began
to develop his own physical and geometric viewpoint on the
subject, a viewpoint that would later be enshrined in his text-
book Gravitation.1

“Everything is fields”
While teaching his first relativity course, Wheeler realized
there could exist, at least in principle, a spherical or toroidal
object made up of electromagnetic waves that hold them-
selves together gravitationally, with the waves’ gravitational
binding produced by their energy. He called such an object a
geon (gravitational–electromagnetic entity), and he explored
its properties in depth as a classical model for an elementary
particle.2 (For “geon” and other terms coined by Wheeler, see
box 1.) More interesting, he realized a bit later, was a purely
gravitational geon: a bundle of gravitational waves held to-
gether gravitationally. Such a geon would pull on its sur-
roundings, thereby exhibiting mass, but it would not contain
any material mass. Mass without mass, he called it.

The geon in one sense was a dead end. As Wheeler soon

realized, the conditions for creating a geon almost certainly
do not exist in our universe except possibly in its earliest
 moments. And once a geon was created, not only would its
waves leak out slowly but a collective instability would de-
stroy it in a short time. Nevertheless, for Wheeler the geon
was crucial: It hinted at a richness that might reside, as yet
unexplored, in Albert Einstein’s general theory of relativity;
it gave him the courage to enlist students and postdocs in his
quest for that richness; and it gave him the idea that funda-
mental particles might actually be built, in some manner,
from curved spacetime—quantum mechanical variants of
a geon.

Charge without charge might also exist: Resurrecting a
1924 idea of Hermann Weyl, Wheeler imagined electric field
lines threading topological handles in the structure of space
(for which he coined the word “wormhole”). One mouth of
the wormhole would have electric fields entering it and thus
exhibit negative charge, and the fields emerging from the
other mouth would make it positively charged. Could an
electron’s or proton’s charge be some quantum variant of that
scenario?

By 1955, when Wheeler published his first geon paper2
(including remarks about charge without charge and worm-
holes), he was bubbling over with ideas for general-relativity
research projects and was starting to feed them to his first set
of relativity students. He was also developing an approach
to physics that he called radical conservative-ism: Insist on ad-
hering to well-established physical laws (be conservative),
but follow those laws into their most extreme domains (be
radical), where unexpected insights into nature might be
found. He attributed that philosophy to his own revered
mentor, Niels Bohr.

In that spirit, in the mid- and late 1950s Wheeler and his
entourage explored geons of all conceivable types, cylindrical
gravitational waves, the interaction of neutrinos with curved
spacetime, the interface between general relativity and quan-
tum theory, the physical interpretation of quantum mechan-
ics, and a closed universe made from a large number of
wormhole mouths with collective gravitational pulls suffi-
cient to bend the universe’s space up into a topological
3-sphere. In a tour de force, Wheeler and his group of nine

John Wheeler,
 relativity, and
 quantum information
Charles W. Misner, Kip S. Thorne, and Wojciech H. Zurek

From the mid-1950s on, John Wheeler’s “radical conservative-ism” allowed him to explore without
fear crazy-sounding ideas that often led to profound physical insights.

Charles Misner is professor of physics, emeritus, at the University of Maryland. Kip Thorne is Feynman Professor of Theoretical Physics at
the California Institute of Technology. Wojciech Zurek is a laboratory fellow at Los Alamos National Laboratory. Two were John Wheeler’s
PhD students, Misner in 1954–57 and Thorne in 1962–65; Zurek was his student in 1976–79 and his postdoc in 1979–81. Misner and
Thorne coauthored the 1973 textbook Gravitation with Wheeler; Zurek coedited the 1983 Quantum Theory and Measurement with him.
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Massimiliano Sacchi

Stima della capacità quantistica di canali con set limitati di misure
procedura sperimentale facilmente accessibile e versatile  

stato di ingresso fissato, poche misure locali, senza necessità di tomografia completa 

fornisce limiti inferiori alla capacità quantistica per canali ignoti, di cui anche teoricamente non si conosce la capacità 

applicabile anche a canali correlati e con memoria
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Let us consider a detection scheme with maximally entangled input state |�+⇧. The output state can be written on
the ordered Bell basis {|�+⇧, |��⇧, |⇥+⇧, |⇥�⇧} as follows

(IR ⇥ E)|⇥+⇧⌅⇥+| =
1
4

⇤

⌥⌥⇧

(cos � + cos ⇥)2 cos2 �� cos2 ⇥ 0 0
cos2 �� cos2 ⇥ (cos �� cos ⇥)2 0 0

0 0 (sin � + sin⇥)2 sin2 �� sin2 ⇥
0 0 sin2 �� sin2 ⇥ (sin�� sin⇥)2

⌅

��⌃ . (47)

The best vector of probabilities corresponds to the eigenvalues of the matrix (47), namely

⇤p = {0, (cos2 � + cos2 ⇥)/2, 0, (sin2 � + sin2 ⇥)/2} , (48)

pertaining to the basis as in Eq. (12), with

a =
cos ⇥ � cos � 

2(cos2 � + cos2 ⇥)
,

b =
cos � + cos ⇥ 

2(cos2 � + cos2 ⇥)
,

c =
sin⇥ � sin�⌦

2(sin2 � + sin2 ⇥)
,

d =
sin� + sin⇥⌦

2(sin2 � + sin2 ⇥)
. (49)

The output entropy of the reduced state is given by

S

�
E
�

I

2

⇥⇥
= H2((cos2 � + sin2 ⇥)/2) , (50)

hence our detectable quantum capacity can be written as

Q ⇤ QDET = H2((cos2 � + sin2 ⇥)/2)�H2((sin2 � + sin2 ⇥)/2) . (51)

We checked numerically that Q�QDET < 0.005 for all values of � and ⇥. The positive region of the detected capacity
QDET is plotted in Fig. 3.

0

1

2

3

�

0

1

2

3

⇥

0.0

0.5

1.0

QDET

FIG. 3. Positive region of the detected quantum channel capacity (51) for the two-Kraus channel in Eq. (44).
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By the local measurement of ⇧x ⇥ ⇧x, ⇧y ⇥ ⇧y, and ⇧z ⇥ ⇧z, one can detect the bound

Q ⌅ QDET = H2

⇧
1� ⇤

2

⌃
�H(⌃p) = H2

⇧
1� ⇤

2

⌃
�H2

⇤⇤

2

⌅
, (41)

where the best vector of probabilities

⌃p = (1� ⇤/2 , 0 , 0 , ⇤/2) , (42)

correponds to the orthogonal basis in Eq. (12), with c = d = 1⇤
2
, a = 1+

⇤
1��⌃

2(2��)
, and b = �

(1+
⇤

1��)
⌃

2(2��)
. This basis

is clearly made of projectors on the eigenstates of the output state (39).
As long as ⇤ < 1/2 the non-vanishing quantum capacity is detected. Indeed the di�erence Q�QDET never exceeds

0.005. We notice that the Bell basis (11) does not provide the minimum value of H(⌃p). In fact, in such case one has

⌃p =
1
4

⇤
(1 +

�
1� ⇤)2 , (1�

�
1� ⇤)2 , ⇤ , ⇤

⌅
. (43)

By using this value of ⌃p, a non-vanishing quantum capacity is detected only for ⇤ < 0.3466. In Fig. 2 we plot the
detectable bound from Eq. (41) [which is indistinguishable from the quantum capacity (38)], along with the bound
obtained by the proability vector (43) pertaining to the Bell projectors, versus the damping parameter ⇤.
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FIG. 2. Amplitude damping channel with parameter �: detected quantum capacity with maximally entangled input and
measurement on the eigenstates of (39) and on the Bell basis (solid and dashed line, respectively).

F. Qubit channels with two Kraus operators

Following Refs. [14–16], we consider the set of channels

E(⌅) =
2⌥

i=1

Ai⌅A†
i , (44)

with �, ⇥ ⇧ , and

A1 =
⇧

cos � 0
0 cos ⇥

⌃
, A2 =

⇧
0 sin⇥

sin� 0

⌃
. (45)

These channels represent the normal form of equivalence classes, since two channels have the same capacity if they
di�er merely by unitaries acting on input and output. Notice that for � = ⇥ the channel is dephasing, and for ⇥ = 0
it is amplitude damping.

The channels are shown to be degradable for cos(2�)/ cos(2⇥) > 0, hence Q = Q1. On the other hand, they are
antidegradable for cos(2�)/ cos(2⇥) ⇤ 0, thus with Q = 0.

Diagonal input states maximize the coherent information, and in the region cos(2�)/ cos(2⇥) > 0 the quantum
capacity is given by [15]

Q = max
p⇥[0,1]

H2

�
p cos2 � + (1� p) sin2 ⇥

⇥
�H2

�
p sin2 � + (1� p) sin2 ⇥

⇥
. (46)

‘damping’
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By the local measurement of ⇧x ⇥ ⇧x, ⇧y ⇥ ⇧y, and ⇧z ⇥ ⇧z, one can detect the bound

Q ⌅ QDET = H2

⇧
1� ⇤

2

⌃
�H(⌃p) = H2

⇧
1� ⇤

2

⌃
�H2

⇤⇤

2

⌅
, (41)

where the best vector of probabilities

⌃p = (1� ⇤/2 , 0 , 0 , ⇤/2) , (42)

correponds to the orthogonal basis in Eq. (12), with c = d = 1⇤
2
, a = 1+

⇤
1��⌃

2(2��)
, and b = �

(1+
⇤

1��)
⌃

2(2��)
. This basis

is clearly made of projectors on the eigenstates of the output state (39).
As long as ⇤ < 1/2 the non-vanishing quantum capacity is detected. Indeed the di�erence Q�QDET never exceeds

0.005. We notice that the Bell basis (11) does not provide the minimum value of H(⌃p). In fact, in such case one has

⌃p =
1
4

⇤
(1 +

�
1� ⇤)2 , (1�

�
1� ⇤)2 , ⇤ , ⇤

⌅
. (43)

By using this value of ⌃p, a non-vanishing quantum capacity is detected only for ⇤ < 0.3466. In Fig. 2 we plot the
detectable bound from Eq. (41) [which is indistinguishable from the quantum capacity (38)], along with the bound
obtained by the proability vector (43) pertaining to the Bell projectors, versus the damping parameter ⇤.
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FIG. 2. Amplitude damping channel with parameter �: detected quantum capacity with maximally entangled input and
measurement on the eigenstates of (39) and on the Bell basis (solid and dashed line, respectively).

F. Qubit channels with two Kraus operators

Following Refs. [14–16], we consider the set of channels

E(⌅) =
2⌥

i=1

Ai⌅A†
i , (44)

with �, ⇥ ⇧ , and

A1 =
⇧

cos � 0
0 cos ⇥

⌃
, A2 =

⇧
0 sin⇥

sin� 0

⌃
. (45)

These channels represent the normal form of equivalence classes, since two channels have the same capacity if they
di�er merely by unitaries acting on input and output. Notice that for � = ⇥ the channel is dephasing, and for ⇥ = 0
it is amplitude damping.

The channels are shown to be degradable for cos(2�)/ cos(2⇥) > 0, hence Q = Q1. On the other hand, they are
antidegradable for cos(2�)/ cos(2⇥) ⇤ 0, thus with Q = 0.

Diagonal input states maximize the coherent information, and in the region cos(2�)/ cos(2⇥) > 0 the quantum
capacity is given by [15]

Q = max
p⇥[0,1]

H2

�
p cos2 � + (1� p) sin2 ⇥

⇥
�H2

�
p sin2 � + (1� p) sin2 ⇥

⇥
. (46)

‘dephasing’
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By the local measurement of ⇧x ⇥ ⇧x, ⇧y ⇥ ⇧y, and ⇧z ⇥ ⇧z, one can detect the bound

Q ⌅ QDET = H2

⇧
1� ⇤

2

⌃
�H(⌃p) = H2

⇧
1� ⇤

2

⌃
�H2

⇤⇤

2

⌅
, (41)

where the best vector of probabilities

⌃p = (1� ⇤/2 , 0 , 0 , ⇤/2) , (42)

correponds to the orthogonal basis in Eq. (12), with c = d = 1⇤
2
, a = 1+

⇤
1��⌃

2(2��)
, and b = �

(1+
⇤

1��)
⌃

2(2��)
. This basis

is clearly made of projectors on the eigenstates of the output state (39).
As long as ⇤ < 1/2 the non-vanishing quantum capacity is detected. Indeed the di�erence Q�QDET never exceeds

0.005. We notice that the Bell basis (11) does not provide the minimum value of H(⌃p). In fact, in such case one has

⌃p =
1
4

⇤
(1 +

�
1� ⇤)2 , (1�

�
1� ⇤)2 , ⇤ , ⇤

⌅
. (43)

By using this value of ⌃p, a non-vanishing quantum capacity is detected only for ⇤ < 0.3466. In Fig. 2 we plot the
detectable bound from Eq. (41) [which is indistinguishable from the quantum capacity (38)], along with the bound
obtained by the proability vector (43) pertaining to the Bell projectors, versus the damping parameter ⇤.
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F. Qubit channels with two Kraus operators

Following Refs. [14–16], we consider the set of channels

E(⌅) =
2⌥

i=1

Ai⌅A†
i , (44)

with �, ⇥ ⇧ , and

A1 =
⇧

cos � 0
0 cos ⇥

⌃
, A2 =

⇧
0 sin⇥

sin� 0

⌃
. (45)

These channels represent the normal form of equivalence classes, since two channels have the same capacity if they
di�er merely by unitaries acting on input and output. Notice that for � = ⇥ the channel is dephasing, and for ⇥ = 0
it is amplitude damping.

The channels are shown to be degradable for cos(2�)/ cos(2⇥) > 0, hence Q = Q1. On the other hand, they are
antidegradable for cos(2�)/ cos(2⇥) ⇤ 0, thus with Q = 0.

Diagonal input states maximize the coherent information, and in the region cos(2�)/ cos(2⇥) > 0 the quantum
capacity is given by [15]

Q = max
p⇥[0,1]

H2

�
p cos2 � + (1� p) sin2 ⇥

⇥
�H2

�
p sin2 � + (1� p) sin2 ⇥

⇥
. (46)
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1� ⇤

2

⌃
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⇧
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⌃
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⇤⇤
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⌅
, (41)

where the best vector of probabilities
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2
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⇤
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2(2��)
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(1+
⇤

1��)
⌃

2(2��)
. This basis

is clearly made of projectors on the eigenstates of the output state (39).
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⌅
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By using this value of ⌃p, a non-vanishing quantum capacity is detected only for ⇤ < 0.3466. In Fig. 2 we plot the
detectable bound from Eq. (41) [which is indistinguishable from the quantum capacity (38)], along with the bound
obtained by the proability vector (43) pertaining to the Bell projectors, versus the damping parameter ⇤.
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, A2 =
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⌃
. (45)

These channels represent the normal form of equivalence classes, since two channels have the same capacity if they
di�er merely by unitaries acting on input and output. Notice that for � = ⇥ the channel is dephasing, and for ⇥ = 0
it is amplitude damping.

The channels are shown to be degradable for cos(2�)/ cos(2⇥) > 0, hence Q = Q1. On the other hand, they are
antidegradable for cos(2�)/ cos(2⇥) ⇤ 0, thus with Q = 0.

Diagonal input states maximize the coherent information, and in the region cos(2�)/ cos(2⇥) > 0 the quantum
capacity is given by [15]

Q = max
p⇥[0,1]
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�
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(con C. Macchiavello)
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sample space
event
event
outcome
network
connectivity rules

1.1. Test. A test is made of the following ingredients: a) a collection of possible
outcomes; b) some input systems; c) some output systems. It will be represented in
form of a box, as follows

A
1

{A
i

}
B

1

A
2

B
2

The left wires represent the input systems, the right wires the output systems, and
{A

i

} denotes the complete collection of possible outcomes.

We will use the collection {A
i

}
i2X to denote the test itself, and we will call the set X

sample space. It is often convenient to represent just a single outcome A
i

, or, more
generally, a subset A ⇢ {A

i

} of the collection of possible outcomes, i. e. what is
called an event, as follows

A
1

A
B

1

A
2

B
2

.

The number of wires at the input and at the output can vary, and one can have also
no wire at the input and/or at the output. For example in the Stern-Gerlach test we have
a single input wire and no output wire, and we can imagine the input wire as the particle
entering the apparatus, whereas we have no output wire since there will be nothing left
after the test, apart from the "# outcome. In the case of the beam splitter the input
and the output systems will be four modes of the e. m. field with different directions,
whereas there will be no outcome. In the case of the particle interaction, the input
and output systems are indeed the input and output particles, whereas the outcomes are
particle-events that we detect.

1.2. What are the events? Events are “things” that happen—such as thunders,
lightenings, particle tracks, scintillations on a cathodic screen, or life and death.1 We
distinguish between events and outcomes to emphasize the elemental nature of the
outcomes versus the set nature of events, in the sense that events are “sets of outcomes”,
or, viceversa, you can take disjoint events as outcomes themselves. Thus, synonymous
of outcomes are also “elementary” or “simple event”, or we can stress that an events
consists of more than one outcome by naming it “compound event”. An outcome/event
can be the result of an “experiment”, but the fact that it may or may not occur, does
not necessarily brings a probabilistic connotation, for example the fact that it happens
or not may only depend on what is connected to the wires. Moreover, we remind that
we can have the case of a single event, as in the example of the beam splitter, or in the
case of an interaction between particles.

1.3. Preview of the notion of “network”. In order to understand the intimate
meaning of the notion of test/event and of its box representation, we should imagine
the test inserted in its natural environment: the network. Here the box will be actually
connected to other tests/events as in Fig. 1.1. The different letters A,B,C, . . .A [event]

A [system]

{A
i

}
i2X [test]

labeling the wires will be used to denote different “types of system”. The meaning
itself of the word “system” ultimately comes from the following connectivity rules:

1The last two examples fit very well the case of the sort of the Schrődinger cat, in the famous paradox
about quantum measurements.

March 27, 2014 DRAFT

input output1.1. TESTS, EVENTS, AND THEIR NETWORKS. 13

A

A

B C C

E

D

E F

D

G

H

B

L M

F

N

O P

Figure 1.1: A network of events. The events are represented by boxes with wires. Wires
are of two kinds: input and output, on the left/right side of the box, respectively. They
come in different types represented by letters A,B,C . . . labeling the wires. Wires—
also called systems—can be connected only by adjoining an input with an output both
with the same label, without making closed loops. The wires have only an operational
meaning, representing the connections between different operations.

1.4. Connectivity rules:

1. we can connect only an output wire of a box with an input wire of another
box,

2. we can connect only wires with the same label,

3. loops are forbidden,

1.5. Then, what are the wires? Ultimately the wires have only the function of
ruling the way in which a box can be connected to another box. Think for example
of the case of the beam splitter: you don’t actually “see” the e. m. field, however you
know how to put other beam splitters together on an optical table, by “imagining” the
field-mode that comes out from a beam splitter and enters another one. The systems
are just as the lines of an exploded view of a piece of Ikea furniture: the lines don’t
exist anywhere, they only provide an operational schematic of the experiment or of
the phenomenon.2 The various events in the network are connected, meaning that the
occurrence of an event in a given test generally depends on the occurrence of other
events in other tests that are connected to the given test. Thus, ultimately systems are
a representation of the causal connections between different events. In essence, this
is what e. g. input/output particles are in a scattering experiment, or what electric and
photonic signals are when they connect different devices. We should keep in mind
such purely connectivity role of wires in the circuit, and never imagine real wires e. g.
as representing a “free evolution”, which, instead, will be a special kind of test, i. e.
a deterministic test with a single outcome. Hence, don’t forget: wires are just causal
connections. We call wires “systems”, since indeed causal influences are propagated
by what we call a “system” going from one test to another in a test-cascade. Since we
are interested only in events and in relations between events, although actual events
occur in a finite amount of time, we can conveniently consider them as instantaneous,

2This illustration of the notion of “system” has been used by Lucien Hardy in a talk at Perimeter in 2009
[?].
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