Spettroscopia Raman (e non solo) @ Dip. FISICA:

Raman and EPR Research Unit on Materials Science

In quali ambiti di ricerca?

Con chi?

Raman Shift (cm⁻¹)

da "Introduction to vibrational spectroscopies" J. Serrano

Structural Investigation in Single Crystal and Ceramic Mn:SrTiO₃

STRUCTURAL INVESTIGATION OF MANGANESE DOPED ...

Mozzati - Galinetto

1

or It's fun to flip electrons!

EPR: rivela transizioni di dipolo magnetico in sistemi paramagnetici diluiti Indagine dello stato fondamentale, delle caratteristiche di simmetria dell'intorno, delle interazioni magnetiche locali di ioni di elementi di transizione e di terre rare. Individuazione di difetti paramagnetici preesistenti o indotti.

Cross-sections of the optical processes

Lo studio e la realizzazione di vetri funzionalizzati ad attività antibatterica sono di notevole importanza per tutte le applicazioni connesse all'impianto di dispositivi medicali e in generale per la biomedicina

J Nanopart Res (2013) 15:2047 DOI 10.1007/s11051-013-2047-x

RESEARCH PAPER

Mixing thiols on the surface of silver nanoparticles: preserving antibacterial properties while introducing SERS activity

Angelo Taglietti · Yuri A. Diaz Fernandez · Pietro Galinetto · Pietro Grisoli · Chiara Milanese · Piersandro Pallavicini

Fig. 5 a Details of SERS spectra for different coating compositions of MGAgNPs: *a* 100 % GSH; *b* 85 % GSH–15 % MMC; *c* 65 % GSH–35 % MMC; *d* 25 % GSH–75 % MMC. b Integrated intensities of SERS signal for the modes at \sim 1,170 and \sim 1,595 cm⁻¹

Nuove metodologie per le Scienze Forensi: la spettroscopia Raman nella rilevazione di tracce ematiche o di tracce di sostanze psicotrope in materiale ematico

Eterostrutture di fili di GaAsN in GaAsN:H su substrato di GaAs

Il film iniziale di GaAsN su GaAs, di spessore 200nm, è in condizioni di strain biassiale tensile.

L'eterostruttura di fili GaAsN fra barriere di GaAsN:H è ottenuta con idrogenazione selettiva.

Nell'eterostruttura fili/barriere è presente strain uniassiale (ε_{xx}) modulato spazialmente.

La polarizzazione della emissione in PL (ρ) si correla con la modulazione dello strain uniassiale (ϵ_{xx}) ricavato da simulazioni.

Imaging mediante fotoluminescenza (PL) di fili di differente larghezza.

R. Trotta et al., Appl. Phys. Lett. 94, 261905 (2009)

Giulotto

Mappatura dello strain in fili GaAsN/GaAsN:H mediante Raman scattering

La frequenza del fonone LO dipende dallo stato di strain del materiale

(b) L'andamento dell'intensità integrata del modo localizzato Ga-N lungo la medesima linea segue in modo accurato la variazione della composizione.

E. Giulotto, M. Geddo, M. Patrini, G. Guizzetti et al., J. Appl. Phys. 116, 245304 (2014)

Raman Modes in Carbon Materials

Diamond *sp*³ (3D) 1332 cm⁻¹

Graphite *sp*² (2D) 1582 cm⁻¹

Chain *sp*¹ (1D) 1855 cm⁻¹

?;

Spettroscopia Raman del grafene

V. Bellani

J. Appl. Phys. 108, 084321 (2010). J. Mater. Chem. 21, 2924 (2011). Carbon 84, 254 (2015).

Collaborazioni

Laboratorio di Nanochimica, CNR Bologna

Universita' di Salamanca

Dipartimento di chimica fisica, Universita' di Pavia

Spettroscopia Raman di nano-fili di carbonio e semiconduttori V. Bellani

Raman of semiconductor nano-wires and carbon-nano tubes

Nanoscale **6**, 788 (2014)

and nanoTechnology

National Enterprise for nanoScience

Collaborazioni

NEST Laboratory & Scuola Normale, Pisa

University of Brescia

Euromagnet, High Magnetic Field Laboratory

Li₁₂C₆₀: A lithium clusters intercalated fulleride

Chemical Physics Letters 609 (2014) 155-160

Fabio Giglio^a, Daniele Pontiroli^{a,b}, Mattia Gaboardi^a, Matteo Aramini^a, Chiara Cavallari^{a,c}, Michela Brunelli^c, Pietro Galinetto^d, Chiara Milanese^e, Mauro Riccò^{a,*}

^a Dipartimento di Fisica e Scienze della Terra, Università degli Studi di Parma, Via G. P. Usberti 7/a, 43124 Parma, Italy

^bLaboratorio di Micro e Submicro Tecnologie abilitanti dell'Emilia Romagna (MIST.E-R), Via P. Gobetti 101, 40129 Bologna, Italy

^c Institut Laue Langevin, BP 156, 6 rue Jules Horowitz, 38042 Grenoble Cedex 9, France

^d Dipartimento di Fisica 'A. Volta', Università di Pavia, Via Bassi 6, 27100 Pavia, Italy

e Pavia Hydrogen Lab, Dipartimento di Chimica, Sezione di Chimica Fisica, Università di Pavia, V.le Taramelli 16, 27100 Pavia, Italy

