

Teoria dei Solidi, Fotonica, Nanostrutture Dario Gerace

Dipartimento di Fisica, Università di Pavia & C.N.I.S.M. (Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Materia)

Giornata di orientamento L.M. in Scienze Fisiche - 23 Maggio 2013

People involved

Lucio C. Andreani

Photonics and Nanostructures group

Dario Gerace

Marco Liscidini

Silvano Romano → statistical mechanics

- Post-Docs: L. Carroll, S. D'Agostino, S. Robertson
- <u>PhD students</u>: F. Alpeggiani, A. Bozzola, M. Bravi, S. Ferretti, S.W. Flores, P. Kowalczewski
- Several international collaborations (Canada, US, Brazil, France, Switzerland, UK ...)

Condensed Matter Physics

Interested scales and ranges:

Energy scales $\rightarrow \mu eV$ - KeV realm of electromagnetic interactions

Research in Condensed Matter Theory

Active research lines

- Photonic Crystals: physics and applications
- Radiation-matter interaction in nanostructures
- Photovoltaics
- Nonlinear and quantum photonics
- Plasmonics and superconductors
- Statistical Mechanics of spins on lattices
- Strongly correlated systems & analog models

Photonic Crystals: physics and applications

Photonic crystals

electrons in crystalline solids

Schrödinger equation

photons in periodic dielectric media

2nd-order Maxwell eqs. for harmonic fields

$$H\Psi = \left(-\frac{\hbar^2}{2m}\nabla^2 + U(\mathbf{r})\right)\Psi = E\Psi \quad \longleftrightarrow \quad \nabla \times \left(\frac{1}{\epsilon(\mathbf{r})}\nabla \times \mathbf{H}(\mathbf{r})\right) = \frac{\omega^2}{c^2}\mathbf{H}(\mathbf{r})$$

"Photonic bands" and energy gaps, as in solids!

Photonics for telecom applications (Andreani-Gerace)

Photonic crystal cavities (Andreani-Gerace)

- Point-defects in PhC: high-Q, small-V nanocavities
- Control of light confinement at the nanoscale

Several applied and fundamental works in collaboration with experimental photonics group (see Marabelli)

Radiation-matter interaction in nanostructures

Semiconductor Nanostructures

Bottom-up assembly of different semiconductors

TEM image of a quantum dot

Cavity Quantum Electro-Dynamics (Gerace)

Single (or a few) atom coupled to a high-Q/small-V resonator

7 nm

Traditionally used in atomic CQED

 \rightarrow 2012 Nobel **Prize for Physics!**

3-d superconducting cavity

Today applied to diverse nanostructured systems

Spin ensemble in superconducting resonator

QD in PhC cavity

MIUR - FIRB "giovani" project with NMR group

Bloch surface waves (Liscidini)

- > Theoretical study of optical surface waves in periodic media.
- Connection with fundamental research in light-matter interaction (polaritons) and optical sensing (Raman, fluorescence).

> Photovoltaics

Photovoltaics: general

Photovoltaic conversion in solar cells = **optical problem** (light trapping) + **electronic problem** (carrier collection)

- \Rightarrow ideal playground for photonics + semiconductors
- \Rightarrow with both fundamental aspects (efficiency limits) and applied ones
- ⇒ *cultural* opportunities, as well as *funding* and *career* ones

Photovoltaics research (Andreani-Liscidini)

EU FP7 Marie Curie ITN Network PROPHET – "Postgraduate Research in Photonics as an Enabling Technology"

Fondazione Cariplo "Nanophotonics for thin-film photovoltaics"

ENI S.p.A. research contract "Photonics for photovoltaics systems based on fluorescent concentrators"

Focus of research: towards thin-film solar cells with high conversion efficiency – crucial for large-scale photovoltaic energy production in the long term.

Highlight: thin-film silicon solar cells can be more performing than bulk ones provided optimal (Lambertian) light trapping is applied (Bozzola et al., 2013, unpublished)

→ Nanophotonics meets Photovoltaics

Light trapping \rightarrow optimal thickness < 10 μ m

PROPHET

> Nonlinear and quantum photonics

Generation of entangled-photon pairs (Liscidini)

- Theoretical study and design of possible sources of quantum correlated photon pairs in nonlinear devices
- Connections to Quantum Mechanics, Quantum Computation and Quantum Information.

MIUR - FIRB "giovani" project (Bajoni - Liscidini)

Single-photon sources (Gerace)

Fundamental physics today...applications tomorrow ?

Plasmonics and superconductors

Plasmonics

PLASMONS are collective excitations of free electrons in a metal

They can LOCALIZE \rightarrow surface plasmons

They can COUPLE TO RADIATION \rightarrow surface plasmon polaritons

Vibrant field of research, with many fundamental aspects (control of radiative processes, sub-wavelength optics...) and applied ones (biosensors...)

Plasmonics research (Andreani)

Control of radiation-matter interaction, dipole-emission rates

➢ Surface-enhanced processes because of electric-field localization → Biosensors

➢ High-Tc superconductors: low-frequency plasma waves due to Josephson tunnelling along c-axis → Terahertz plasmons

 \rightarrow Connection with Terahertz photonics

→ Possible link with mechanism of high-Tc superconductivity

Bi₂Sr₂CuO_{6+x}

Statistical Mechanics of spins on lattices

Statistical Mechanics (S. Romano)

Computational research on liquid phases of matter

Statistical mechanics of Spin lattices

Study of thermodynamic and structural properties of systems of interacting many particles

 $\mathbf{E}(t)$

RELATED COURSES (L.M. Chimica): Statistical Thermodynamics Theoretical and Computational Chemistry

Strongly correlated systems & analog models

Strongly correlated systems (Gerace-Andreani)

phonon

The physics of interacting quasi-particles (electrons, polaritons, phonons, plasmons, magnons, ...)

Manybody theory...techniques from QFT

Analog models (Gerace)

Studying systems with formal analogies with known models in theoretical physics

e.g.: relativistic electrons in graphene, strongly correlated photonic lattices, analog Hawking radiation in superfluids,...

Aim: creating a bridge between theoretical physics and CM physics of elementary excitations

Visit our website (jointly with experimental photonics group)

http://fisica.unipv.it/nanophotonics