

Chi e Come?

Staff (tempo indeterminato)

- 1) Mauro Carfora (PO)
- 2) Annalisa Marzuoli (PA)
- 3) lo (RU)

Dottorandi

- 1) Marco Benini (secondo anno)
- 2) Dimitri Marinelli (terzo anno)

Laureandi (magistrali)

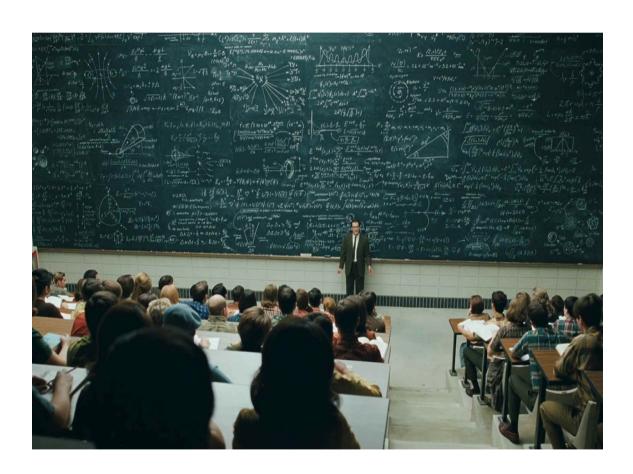
1) Sara Riccò

3) Gabriele Nosari (detto "il Cospi")

2) Simone Murro

4) Micol Previde Massara

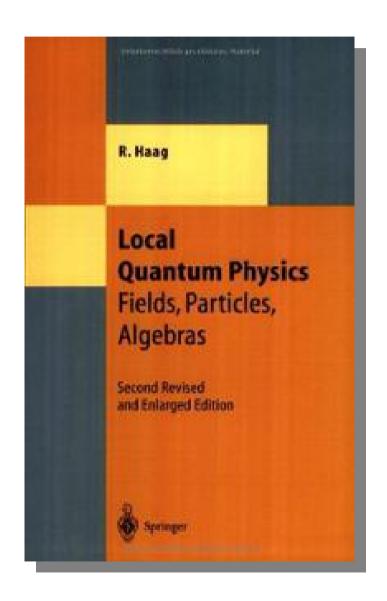
Le nostre collaborazioni


Abbiamo collaborazioni (inter)nazionali su diversi temi

- Amburgo (Desy), Genova, Trento QFT: costruzione ed applicazioni soprattutto in cosmologia
- Genova, Chicago (EFI), York (UK), Wuppertal (D)
 teorie di gauge
- Vienna (ESI) e Durban (Sud Africa) geom. NC e AQFT
- Lione (F) Flussi di Ricci e cosmologia
- Perugia e Torino (ISI) TFT e sistemi condensati
- Abbiamo anche stretti contatti con, Roma 1 & 2, Berkley (USA), Potsdam, Lipsia, Würzburg, Gottinga (D), Cracovia (PI), Parigi VI (F), Kyoto & Tokyo (JP), San Paolo (Brasile)

Non vi piace viaggiare? Mestiere sbagliato!

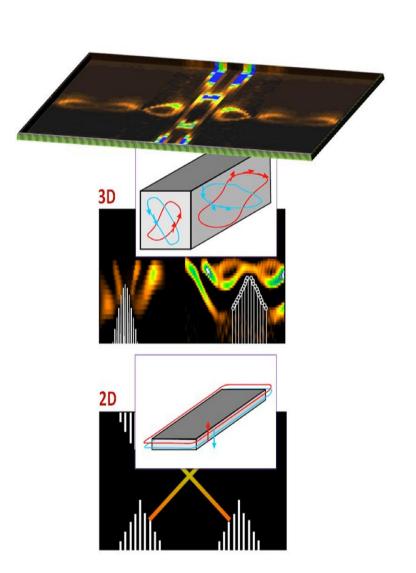
L'immagine che avete di noi


Standard Model Lagrangian Density

 $-\frac{1}{2}\partial_{\nu}g^{a}_{\mu}\partial_{\nu}g^{a}_{\mu} - g_{s}f^{abc}\partial_{\mu}g^{a}_{\nu}g^{b}_{\mu}g^{c}_{\nu} - \frac{1}{4}g^{2}_{s}f^{abc}f^{ade}g^{b}_{\mu}g^{c}_{\nu}g^{d}_{\mu}g^{e}_{\nu} +$ $\frac{1}{3}iq_s^2(\bar{q}_s^{\sigma}\gamma^{\mu}q_s^{\sigma})q_u^a + \bar{G}^a\partial^2G^a + q_sf^{abc}\partial_u\bar{G}^aG^bq_u^c - \partial_\nu W_{+}^{\dagger}\partial_\nu W_{-}^{\dagger} M^{2}W_{\mu}^{+}W_{\mu}^{-} - \frac{1}{2}\partial_{\nu}Z_{\mu}^{0}\partial_{\nu}Z_{\mu}^{0} - \frac{1}{2c^{2}}M^{2}Z_{\mu}^{0}Z_{\mu}^{0} - \frac{1}{2}\partial_{\mu}A_{\nu}\partial_{\mu}A_{\nu} - \frac{1}{2}\partial_{\mu}H\partial_{\mu}H - \frac{1}{2}\partial_{\mu}H\partial_{\mu}H$ $\frac{1}{2}m_h^2H^2 - \partial_\mu\phi^+\partial_\mu\phi^- - M^2\phi^+\phi^- - \frac{1}{2}\partial_\mu\phi^0\partial_\mu\phi^0 - \frac{1}{2c^2}M\phi^0\phi^0 - \beta_h\left[\frac{2M^2}{c^2} + \frac{1}{2}\partial_\mu\phi^0\partial_\mu\phi^0\right] - \frac{1}{2}M\phi^0\phi^0 - \frac{1}{2}M\phi^0 -$ $\frac{2M}{a}H + \frac{1}{2}(H^2 + \phi^0\phi^0 + 2\phi^+\phi^-) + \frac{2M^4}{a^2}\alpha_h - igc_w[\partial_\nu Z_\mu^0(W_\mu^+W_\nu^- - igc_w^-)]$ $\begin{array}{c} g & W_{\nu}^{+}W_{\mu}^{-}) - Z_{\nu}^{0}(W_{\mu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\mu}^{-}\partial_{\nu}W_{\mu}^{+}) + Z_{\mu}^{0}(W_{\nu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\nu}^{-}\partial_{\nu}W_{\mu}^{+}) + Z_{\mu}^{0}(W_{\nu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\nu}^{-}\partial_{\nu}W_{\mu}^{+})] - igs_{w}[\partial_{\nu}A_{\mu}(W_{\mu}^{+}W_{\nu}^{-} - W_{\nu}^{+}W_{\mu}^{-}) - A_{\nu}(W_{\mu}^{+}\partial_{\nu}W_{\mu}^{-}) \end{array}$ $W_{\mu}^{-} \partial_{\nu} W_{\mu}^{+}) + A_{\mu} (W_{\nu}^{+} \partial_{\nu} W_{\mu}^{-} - W_{\nu}^{-} \partial_{\nu} W_{\mu}^{+})] - \frac{1}{2} g^{2} W_{\mu}^{+} W_{\mu}^{-} W_{\nu}^{+} W_{\nu}^{-} + \frac{1}{2} g^{2} W_{\mu}^{+} W_{\nu}^{-} W_{\nu}^{+} + g^{2} c_{w}^{2} (Z_{0}^{0} W_{\mu}^{+} Z_{0}^{0} W_{\nu}^{-} - Z_{0}^{0} Z_{0}^{0} W_{\nu}^{+} W_{\nu}^{-}) +$ $g^2s_w^2(A_\mu W_\mu^+ A_\nu W_\nu^- - A_\mu A_\mu W_\nu^+ W_\nu^-) + g^2s_w c_w[A_\mu Z_\nu^0(W_\mu^+ W_\nu^- W_{\nu}^{++}W_{\mu}^{-}$) $-2A_{\mu}Z_{\mu}^{0}W_{\nu}^{++}W_{\nu}^{-}$] $-g\alpha[H^{3}+H\phi^{0}\phi^{0}+2H\phi^{+}\phi^{-}] \frac{1}{5}g^2\alpha_h[H^4+(\phi^0)^4+4(\phi^+\phi^-)^2+4(\phi^0)^2\phi^+\phi^-+4H^2\phi^+\phi^-+2(\phi^0)^2H^2]$ $gMW_{\mu}^{+}W_{\mu}^{-}H - \frac{1}{2}g\frac{M}{c^{2}}Z_{\mu}^{0}Z_{\mu}^{0}H - \frac{1}{2}ig[W_{\mu}^{+}(\phi^{0}\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}\phi^{0}) W_{\mu}^{-}(\phi^{0}\partial_{\mu}\phi^{+} - \phi^{+}\partial_{\mu}\phi^{0})] + \frac{1}{2}g[W_{\mu}^{+}(H\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}H) - W_{\mu}^{-}(H\partial_{\mu}\phi^{+} - \phi^{-}\partial_{\mu}H)]$ $\phi^{+}\partial_{\mu}H)] + \frac{1}{2}g\frac{1}{\alpha_{\nu}}(Z_{\mu}^{0}(H\partial_{\mu}\phi^{0} - \phi^{0}\partial_{\mu}H) - ig\frac{s_{\mu\nu}^{2}}{\alpha_{\nu\nu}}MZ_{\mu}^{0}(W_{\mu}^{+}\phi^{-} - W_{\mu}^{-}\phi^{+}) +$ $igs_w MA_{\mu}(W_{\mu}^+\phi^- - W_{\mu}^-\phi^+) - ig\frac{1-2c_w^2}{2c_w}Z_{\mu}^0(\phi^+\partial_{\mu}\phi^- - \phi^-\partial_{\mu}\phi^+) + igs_w A_{\mu}(\phi^+\partial_{\mu}\phi^- - \phi^-\partial_{\mu}\phi^+) - \frac{1}{4}g^2W_{\mu}^+W_{\mu}^-[H^2 + (\phi^0)^2 + 2\phi^+\phi^-] \frac{1}{4}g^2\frac{1}{c^2}Z_u^0Z_u^0[H^2+(\phi^0)^2+2(2s_w^2-1)^2\phi^+\phi^-] - \frac{1}{2}g^2\frac{s_w^2}{c}Z_u^0\phi^0(W_u^+\phi^-+$ $W_{\mu}^{-}\phi^{+}$) $-\frac{1}{2}ig^{2}\frac{s_{\mu\nu}^{2}}{c_{\mu\nu}}Z_{\mu}^{0}H(W_{\mu}^{+}\phi^{-}-W_{\mu}^{-}\phi^{+})+\frac{1}{2}g^{2}s_{\nu\nu}A_{\mu}\phi^{0}(W_{\mu}^{+}\phi^{-}+W_{\mu}^{-}\phi^{+})$ $W_{\mu}^{-}\phi^{+}) + \frac{1}{2}ig^{2}s_{w}A_{\mu}H(W_{\mu}^{+}\phi^{-} - W_{\mu}^{-}\phi^{+}) - g^{2}\frac{s_{w}}{c_{w}}(2c_{w}^{2} - 1)Z_{\mu}^{0}A_{\mu}\phi^{+}\phi^{-} - W_{\mu}^{-}\phi^{+}) + \frac{1}{2}ig^{2}s_{w}A_{\mu}H(W_{\mu}^{+}\phi^{-} - W_{\mu}^{-}\phi^{+}) - g^{2}\frac{s_{w}}{c_{w}}(2c_{w}^{2} - 1)Z_{\mu}^{0}A_{\mu}\phi^{+}\phi^{-} - W_{\mu}^{-}\phi^{+})$ $g^1 s_w^2 A_u A_u \phi^+ \phi^- - \overline{e}^{\lambda} (\gamma \partial_+ m_e^{\lambda}) e^{\lambda} - \overline{\nu}^{\lambda} \gamma \partial \nu^{\lambda} - \overline{u}_i^{\lambda} (\gamma \partial_+ m_u^{\lambda}) u_i^{\lambda} - \overline{d}_i^{\lambda} (\gamma \partial_+ m_u^{\lambda}) u_i^{\lambda} + \overline$ m_d^{λ}) $d_i^{\lambda} + igs_w A_{\mu} [-(\bar{e}^{\lambda}\gamma e^{\lambda}) + \frac{2}{3}(\bar{u}_i^{\lambda}\gamma u_i^{\lambda}) - \frac{1}{3}(\bar{d}_i^{\lambda}\gamma d_i^{\lambda})] + \frac{ig}{4c_w} Z_{\mu}^0 [(\bar{\nu}^{\lambda}\gamma^{\mu}(1 + \bar{e}^{\lambda}\gamma e^{\lambda}) + \bar{e}^{\lambda}\gamma^{\mu}(1 + \bar{e}^{\lambda}\gamma e^{\lambda})] + \frac{ig}{4c_w} Z_{\mu}^0 [(\bar{\nu}^{\lambda}\gamma^{\mu}(1 + \bar{e}^{\lambda}\gamma e^{\lambda}) + \bar{e}^{\lambda}\gamma^{\mu}(1 + \bar{e}^{\lambda}\gamma e^{\lambda})] + \frac{ig}{4c_w} Z_{\mu}^0 [(\bar{\nu}^{\lambda}\gamma^{\mu}(1 + \bar{e}^{\lambda}\gamma e^{\lambda}) + \bar{e}^{\lambda}\gamma^{\mu}(1 + \bar{e}^{\lambda}\gamma e^{\lambda})] + \frac{ig}{4c_w} Z_{\mu}^0 [(\bar{\nu}^{\lambda}\gamma^{\mu}(1 + \bar{e}^{\lambda}\gamma e^{\lambda}) + \bar{e}^{\lambda}\gamma^{\mu}(1 + \bar{e}^{\lambda}\gamma e^{\lambda})] + \frac{ig}{4c_w} Z_{\mu}^0 [(\bar{\nu}^{\lambda}\gamma^{\mu}(1 + \bar{e}^{\lambda}\gamma e^{\lambda}) + \bar{e}^{\lambda}\gamma^{\mu}(1 + \bar{e}^{\lambda}\gamma e^{\lambda})] + \frac{ig}{4c_w} Z_{\mu}^0 [(\bar{\nu}^{\lambda}\gamma^{\mu}(1 + \bar{e}^{\lambda}\gamma e^{\lambda}) + \bar{e}^{\lambda}\gamma^{\mu}(1 + \bar{e}^{\lambda}\gamma e^{\lambda})] + \frac{ig}{4c_w} Z_{\mu}^0 [(\bar{\nu}^{\lambda}\gamma^{\mu}(1 + \bar{e}^{\lambda}\gamma e^{\lambda}) + \bar{e}^{\lambda}\gamma^{\mu}(1 + \bar{e}^{\lambda}\gamma e^{\lambda})] + \frac{ig}{4c_w} Z_{\mu}^0 [(\bar{\nu}^{\lambda}\gamma^{\mu}(1 + \bar{e}^{\lambda}\gamma e^{\lambda}) + \bar{e}^{\lambda}\gamma^{\mu}(1 + \bar{e}^{\lambda}\gamma e^{\lambda})] + \frac{ig}{4c_w} Z_{\mu}^0 [(\bar{\nu}^{\lambda}\gamma^{\mu}(1 + \bar{e}^{\lambda}\gamma e^{\lambda}) + \bar{e}^{\lambda}\gamma^{\mu}(1 + \bar{e}^{\lambda}\gamma e^{\lambda})] + \frac{ig}{4c_w} Z_{\mu}^0 [(\bar{\nu}^{\lambda}\gamma^{\mu}(1 + \bar{e}^{\lambda}\gamma e^{\lambda}) + \bar{e}^{\lambda}\gamma^{\mu}(1 + \bar{e}^{\lambda}\gamma e^{\lambda})] + \frac{ig}{4c_w} Z_{\mu}^0 [(\bar{\nu}^{\lambda}\gamma^{\mu}(1 + \bar{e}^{\lambda}\gamma e^{\lambda}) + \bar{e}^{\lambda}\gamma^{\mu}(1 + \bar{e}^{\lambda}\gamma e^{\lambda})] + \frac{ig}{4c_w} Z_{\mu}^0 [(\bar{\nu}^{\lambda}\gamma^{\mu}(1 + \bar{e}^{\lambda}\gamma e^{\lambda}) + \bar{e}^{\lambda}\gamma^{\mu}(1 + \bar{e}^{\lambda}\gamma e^{\lambda})] + \frac{ig}{4c_w} Z_{\mu}^0 [(\bar{\nu}^{\lambda}\gamma^{\mu}(1 + \bar{e}^{\lambda}\gamma e^{\lambda}) + \bar{e}^{\lambda}\gamma e^{\lambda})] + \frac{ig}{4c_w} Z_{\mu}^0 [(\bar{\nu}^{\lambda}\gamma^{\mu}(1 + \bar{e}^{\lambda}\gamma e^{\lambda}) + \bar{e}^{\lambda}\gamma e^{\lambda})] + \frac{ig}{4c_w} Z_{\mu}^0 [(\bar{\nu}^{\lambda}\gamma^{\mu}(1 + \bar{e}^{\lambda}\gamma e^{\lambda})] + \frac{ig}$ $(\gamma^5)\nu^{\lambda}$) + $(\overline{e}^{\lambda}\gamma^{\mu}(4s_w^2 - 1 - \gamma^5)e^{\lambda})$ + $(\overline{u}_i^{\lambda}\gamma^{\mu}(\frac{4}{3}s_w^2 - 1 - \gamma^5)u_i^{\lambda})$ + $(\bar{d}_{i}^{\lambda}\gamma^{\mu}(1-\frac{8}{3}s_{w}^{2}-\gamma^{5})d_{i}^{\lambda})]+\frac{ig}{2\sqrt{2}}W_{\mu}^{+}[(\bar{\nu}^{\lambda}\gamma^{\mu}(1+\gamma^{5})e^{\lambda})+(\bar{u}_{i}^{\lambda}\gamma^{\mu}(1+\gamma^{5})e^{\lambda})]$ γ^{5}) $C_{\lambda\kappa}d_{j}^{\kappa}$)] + $\frac{iq}{2\sqrt{2}}W_{\mu}^{-}[(\bar{e}^{\lambda}\gamma^{\mu}(1+\gamma^{5})\nu^{\lambda}) + (\bar{d}_{j}^{\kappa}C_{\lambda\kappa}^{\dagger}\gamma^{\mu}(1+\gamma^{5})u_{j}^{\lambda})] +$ $\frac{iq}{2\sqrt{2}}\frac{m_c^{\lambda}}{M}[-\phi^+(\bar{\nu}^{\lambda}(1-\gamma^5)e^{\lambda})+\phi^-(\bar{e}^{\lambda}(1+\gamma^5)\nu^{\lambda})]-\frac{q}{2}\frac{m_c^{\lambda}}{M}[H(\bar{e}^{\lambda}e^{\lambda})+$ $\frac{iq}{i\phi^0}(\overline{e}^\lambda\gamma^5e^\lambda)] + \frac{iq}{2M\sqrt{2}}\phi^+[-m_d^\kappa(\overline{u}_j^\lambda C_{\lambda\kappa}(1-\gamma^5)d_j^\kappa) + m_u^\lambda(\overline{u}_j^\lambda C_{\lambda\kappa}(1+\gamma^5)d_j^\kappa)]$ γ^{5}) d_{j}^{κ}] + $\frac{ig}{2M\sqrt{2}}\phi^{-}$ [$m_{d}^{\lambda}(\bar{d}_{j}^{\lambda}C_{\lambda\kappa}^{\dagger}(1+\gamma^{5})u_{i}^{\kappa}) - m_{u}^{\kappa}(\bar{d}_{i}^{\lambda}C_{\lambda\kappa}^{\dagger}(1-\gamma^{5})u_{i}^{\kappa}] \begin{array}{l} \frac{a}{2}\frac{m_N^{\lambda}}{M}H(\bar{u}_j^{\lambda}u_j^{\lambda}) - \frac{a}{2}\frac{m_N^{\lambda}}{M}H(\bar{d}_j^{\lambda}d_j^{\lambda}) + \frac{ia}{2}\frac{m_N^{\lambda}}{M}\phi^0(\bar{u}_j^{\lambda}\gamma^5u_j^{\lambda}) - \frac{ia}{2}\frac{m_N^{\lambda}}{M}\phi^0(\bar{d}_j^{\lambda}\gamma^5d_j^{\lambda}) + \bar{X}^+(\partial^2 - M^2)X^+ + \bar{X}^-(\partial^2 - M^2)X^- + \bar{X}^0(\partial^2 - \frac{M^2}{C_j^2})X^0 + \bar{Y}\partial^2Y + \bar{Y}\partial$ $igc_wW^+_{\mu}(\partial_{\mu}\bar{X}^0X^- - \partial_{\mu}\bar{X}^+X^0) + igs_wW^+_{\mu}(\partial_{\mu}\bar{Y}X^- - \partial_{\mu}\bar{X}^+Y) +$ $igc_{w}W_{\mu}^{\mu}(\partial_{\mu}\bar{X}^{-}X^{0} - \partial_{\mu}\bar{X}^{0}X^{+}) + igs_{w}W_{\mu}^{\mu}(\partial_{\mu}\bar{X}^{-}Y - \partial_{\mu}\bar{Y}X^{+}) + igc_{w}Z_{\mu}^{0}(\partial_{\mu}\bar{X}^{+}X^{+} - \partial_{\mu}\bar{X}^{-}X^{-}) + igs_{w}A_{\mu}(\partial_{\mu}\bar{X}^{+}X^{+} - \partial_{\mu}\bar{X}^{-}X^{-}) - igs_{w}A_{\mu}(\partial_{\mu}\bar{X}^{+}X^{+} - \partial_{\mu}\bar{X}^{-}X^{-}) + igs_{w}A_{\mu}(\partial_{\mu}\bar{X}^{+}X^{-}) + igs$ $\frac{1}{2}gM[\bar{X}^{+}X^{+}H + \bar{X}^{-}X^{-}H + \frac{1}{G_{*}^{2}}\bar{X}^{0}X^{0}H] + \frac{1-2G_{**}^{2}}{2G_{**}}igM[\bar{X}^{+}X^{0}\phi^{+} - \frac{1}{2}G_{**}^{2}]$ $\bar{X}^{-}X^{0}\phi^{-}$] + $\frac{1}{2c_{w}}igM[\bar{X}^{0}X^{-}\phi^{+} - \bar{X}^{0}X^{+}\phi^{-}] + igMs_{w}[\bar{X}^{0}X^{-}\phi^{+} - \bar{X}^{0}X^{+}\phi^{-}]$ $\bar{X}^{0}X^{+}\phi^{-}$] + $\frac{1}{2}igM[\bar{X}^{+}X^{+}\phi^{0} - \bar{X}^{-}X^{-}\phi^{0}]$

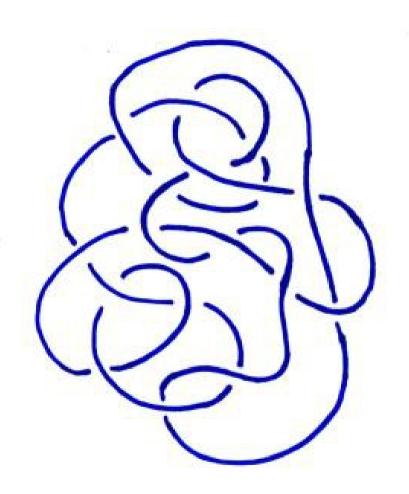
La nostra attività di ricerca

Quattro principali temi:


- I. Teoria dei campi algebrica aspetti costruttivi/matematici
- II. Applicazioni in cosmologia
- III. Teorie topologiche di campo– sistemi condensati
- IV. Metodi geometrici in fisica flussi di Ricci ed applicazioni in cosmologia

La teoria di Einstein in 2+1 dim.

- Equivale ad una teoria di gauge (G=SO(2,1))
- Ha osservabili di natura topologica
- E' quantizzabile con il metodo del path-integral (misura a parte)
- E' utile nel descrivere il comportamento microscopico di nuovi materiali: gli isolanti topologici


$$S = \frac{k}{4\pi} \int \varepsilon^{\lambda\mu\nu} Tr \left(A_{\lambda} \partial_{\mu} A_{\nu} + \frac{2}{3} A_{\lambda} A_{\mu} A_{\nu} \right)$$

Cosa si osserva in quei materiali.

Osservabili di tipo topologico sono legate

- ai nodi (in spazi ambiente 3d)
- alle trecce (traettorie intrecciate di particelle in 2+1dimensioni)

Argomenti di Tesi

- 1. Teoria di Chern--Simons, altre teorie topologiche e teorie geometriche "di bordo"
 - Funzionali quantistici in spazi ambiente continui/discretizzati
 - Gruppo delle trecce e rappresentazioni unitarie
 - Algoritmi per il calcolo di invarianti topologici
- 2. Sviluppi teorici connessi a Chern-Simons vista come teoria che emerge a basse energie in
 - nuovi materiali (isolanti topologici, grafene)
 - computazione quantistica

Teoria dei campi algebrica perchè?

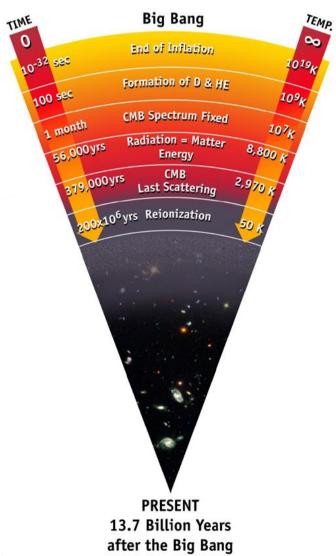
Avete mai pensato che:

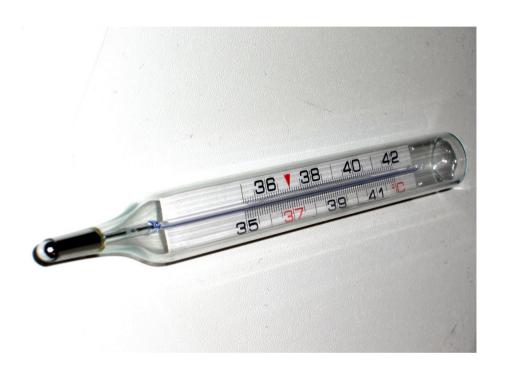
- avete imparato (spero) una formulazione assiomatica della QM.
- Sapete cosa potete fare/osservare e cosa sia lo stato di un sistema.

Domandatevi

- Quante e quali sono le quantità osservabili in una teoria di campo?
- Cosa è uno stato del sistema? Quanti? Servono a qualcosa?
- Ma c'è una formulazione assiomatica delle teorie di campo? Serve?

Teoria dei campi algebrica cosa è?


È una formulazione assiomatica (non è il contrario di "utile/esplicito")


- Si associa ad ogni sistema un'algebra di osservabili
- Fornisce criteri per selezionare stati quantistici "fisici"

VANTAGGI

- 1. E' l'unica formulazione che funziona anche su spaziotempi curvi
- 2. Implementa automaticamente la località e la covarianza
- 3. Riproduce tutti i risultati e le tecniche note su Minkowski
- 4. Fornisce un formalismo rigoroso per la regolarizzazione e la rinormalizzazione.... unifica tutti gli schemi!

Cosmologia e QFT

$$R_{\mu\nu} - \frac{1}{2} R \; g_{\mu\nu} + \underbrace{\Lambda}_{c} g_{\mu\nu} = \frac{8\pi G}{c^4} \, T_{\mu\nu}$$

1

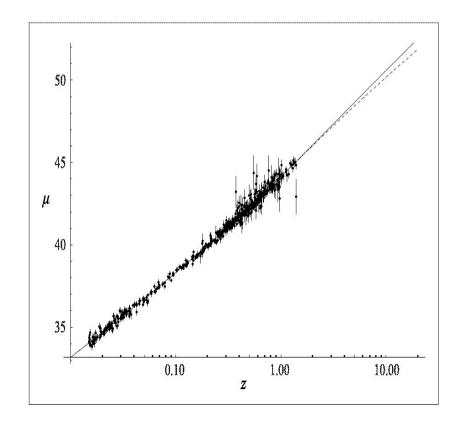
Le domande che ci poniamo

La cosmologia "moderna" è come un adolescente, a metà fra la maturità e l'immaturità.

- 1. Che cosa è la temperatura? Non può venire dall'energia!
 - Eppure è la base della radiazione cosmica di fondo (CMB)
 - Ricordate che la distribuzione di Bose è un concetto legato ai modi... i modi esistono solo in Minkowski (trasf. di Fourier)
- 2. Che cosa è la costante cosmologica?
 - Proviamo a fare per bene la rinormalizzazione in spazi curvi
 - E se i campi sono quantistici cosa succede alle eq. di Einstein?

Che cosa è |0>?

"La costante cosmologica è 120 ordini di grandezza inferiore alle fluttazioni sul vuoto della densità di energia delle particelle del modello standard"


(cit. IL 99% dei testi introduttivi sulla costante cosmologica)

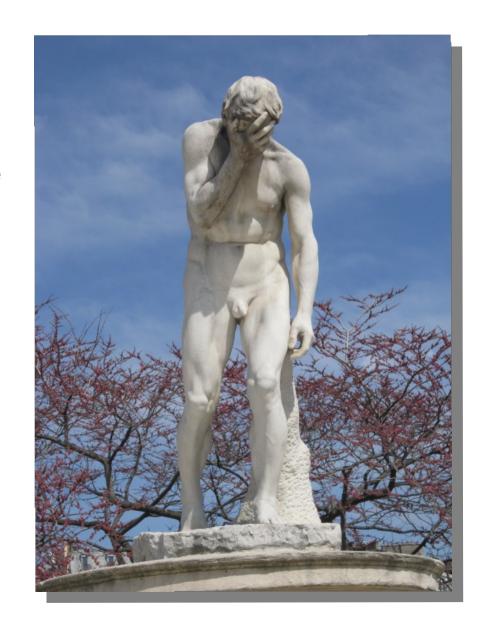
- Che cosa è il vuoto? Il famoso |0> è il vuoto di Poincaré, che esiste ed è unico in Minkowski... ma l'universo non è Minkowski
- Quali sono e come sono fatti gli stati quantistici "sensati" non in Minkowski?
- Cosa vuole dire regolarizzare e rinormalizzare queste teorie?
- Cosa vuole dire fare i polinomi di Wick senza a ed a*?
- Cosa è una distribuzione di Bose o di Fermi se non ho la trasf. di Fourier?

Dove vorremmo arrivare?

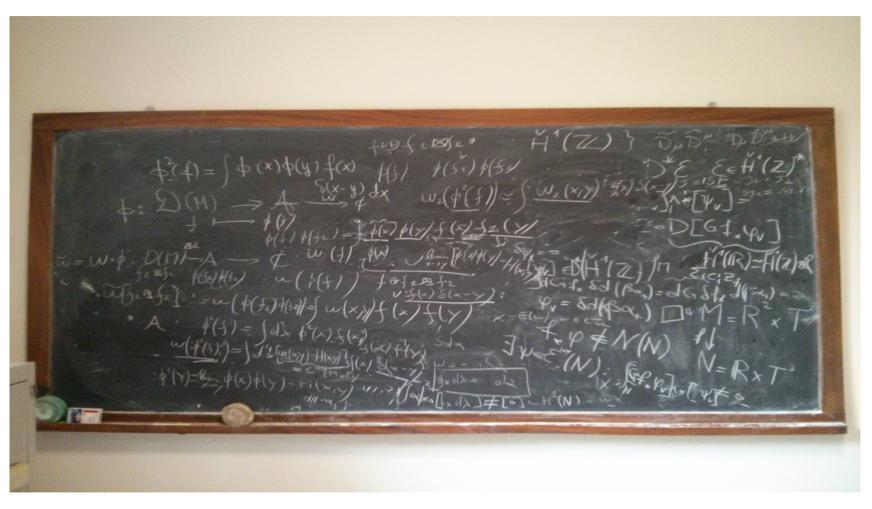
Scopo delle nostre analisi è

- Studiare le eq. di Einstein con materia quantistica
- Studiare per benino gli effetti geometrici della rinormalizzazione
- Fare fisica... ossia ad arrivare ad un numero reale (finito)
- Ricordarsi che è tutto un gioco se non ci confrontiamo con gli esperiementi

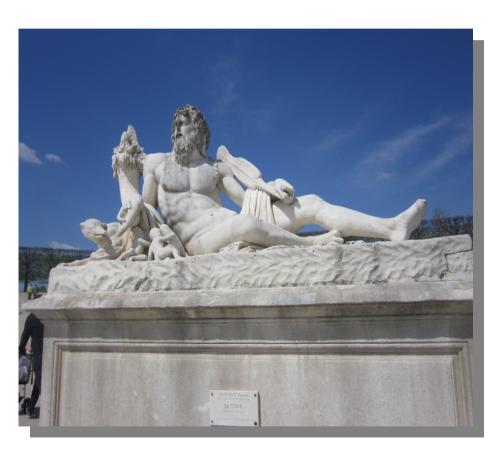
Cosa dovete sapere per fare la tesi in fisica matematica?


Per fare una tesi in fisica matematica, gli ingredienti sono:

- Seguire almeno i corsi di "teoria dei campi" e di "relatività generale"
- Sono utili ma non essenziali "analisi funzionale" e "metodi 3"
- E' imperativa la consapevolezza che dovrete imparare ancora tanto.
 Questi nomi li sognerete ...
 - Analisi microlocale (ho costruito un buono stato fisico?)
 - C*-algebra delle osservabili (la mia osservabile è un buon operatore?)
 - Teoria delle categorie (dipende la fisica del mio sistema dalla varietà?)


Una tesi in fisica matematica

Gli argomenti "hot"


- QFT in cosmologia ed eq. di Einstein semiclassiche
- Formulazione rigorosa delle teoria di campo e di gauge
- Costruzioni di stati quantistici "sensati" (quelle cose che chiamate |0>...)
- Studio rigoroso formale di effetti tipo
 - Aharanov-Bohm ed effetti topologici
 - Effetto Casimir in configurazioni non standard
- Modelli discretizzati di Quantum Gravity
- Teorie topologiche di campo in sistemi condensati

La giornata tipo con noi

Lo scopo di una tesi con noi

- Sbattere per la prima volta la testa contro un problema di cui non si sa se esiste e come si costruisce la soluzione.
- Imparare a gestire la frustrazione
- Laurearsi entro il termine per non pagare le tasse
- Laurearsi in tempo per fare i concorsi di dottorato
- Acquisire tutte le carte in regola per fare un dottorato di ricerca ovunque!
- Inculcarsi in testa l'adagio "Hear all, trust nothing" ... compreso anzi soprattutto riferito a quello che fate voi stessi!

In Conclusione....

Vi prometto

- Problemi stimolanti
- Un ambiente di ricerca interessato a quello che farete
- La possibilità di impare tanto

Tuttavia

- Non è facile ...
- Penerete ... (ed io con voi)

Alla fine, per dirla alla

"Game of Thrones"...

FIRE AND BLOOD