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In spring 1952, as John Wheeler neared the end of design
work for the first thermonuclear explosion, he plotted a rad-
ical change of research direction: from particles and atomic
nuclei to general relativity.

With only one quantitative observational contact (the
perihelion shift of Mercury) and two qualitative ones (the
 expansion of the universe and gravitational light deflection)
general relativity in the early 1950s had become a backwater
of physics. It was more a branch of mathematics than of
physics, and a not very interesting one. Among the world’s
leading physicists at the time, only Wheeler envisioned a
 future in which curved spacetime would be fundamental to
the nature of matter and the astrophysical universe. Because,
in his words, “relativity is too important to leave to the math-
ematicians,” Wheeler set out to discover its roles. Through
that quest, over the subsequent two decades, he, his students,
and their intellectual descendants would revitalize general
relativity and make it an exciting field for other researchers.

“If you would learn, teach!” was one of Wheeler’s fa-
vorite aphorisms (figure 1). So as the first step in his quest,
he taught a course in relativity at Princeton University—the
first such course since 1941. In his 1952–53 course, he began
to develop his own physical and geometric viewpoint on the
subject, a viewpoint that would later be enshrined in his text-
book Gravitation.1

“Everything is fields”
While teaching his first relativity course, Wheeler realized
there could exist, at least in principle, a spherical or toroidal
object made up of electromagnetic waves that hold them-
selves together gravitationally, with the waves’ gravitational
binding produced by their energy. He called such an object a
geon (gravitational–electromagnetic entity), and he explored
its properties in depth as a classical model for an elementary
particle.2 (For “geon” and other terms coined by Wheeler, see
box 1.) More interesting, he realized a bit later, was a purely
gravitational geon: a bundle of gravitational waves held to-
gether gravitationally. Such a geon would pull on its sur-
roundings, thereby exhibiting mass, but it would not contain
any material mass. Mass without mass, he called it.

The geon in one sense was a dead end. As Wheeler soon

realized, the conditions for creating a geon almost certainly
do not exist in our universe except possibly in its earliest
 moments. And once a geon was created, not only would its
waves leak out slowly but a collective instability would de-
stroy it in a short time. Nevertheless, for Wheeler the geon
was crucial: It hinted at a richness that might reside, as yet
unexplored, in Albert Einstein’s general theory of relativity;
it gave him the courage to enlist students and postdocs in his
quest for that richness; and it gave him the idea that funda-
mental particles might actually be built, in some manner,
from curved spacetime—quantum mechanical variants of
a geon.

Charge without charge might also exist: Resurrecting a
1924 idea of Hermann Weyl, Wheeler imagined electric field
lines threading topological handles in the structure of space
(for which he coined the word “wormhole”). One mouth of
the wormhole would have electric fields entering it and thus
exhibit negative charge, and the fields emerging from the
other mouth would make it positively charged. Could an
electron’s or proton’s charge be some quantum variant of that
scenario?

By 1955, when Wheeler published his first geon paper2

(including remarks about charge without charge and worm-
holes), he was bubbling over with ideas for general-relativity
research projects and was starting to feed them to his first set
of relativity students. He was also developing an approach
to physics that he called radical conservative-ism: Insist on ad-
hering to well-established physical laws (be conservative),
but follow those laws into their most extreme domains (be
radical), where unexpected insights into nature might be
found. He attributed that philosophy to his own revered
mentor, Niels Bohr.

In that spirit, in the mid- and late 1950s Wheeler and his
entourage explored geons of all conceivable types, cylindrical
gravitational waves, the interaction of neutrinos with curved
spacetime, the interface between general relativity and quan-
tum theory, the physical interpretation of quantum mechan-
ics, and a closed universe made from a large number of
wormhole mouths with collective gravitational pulls suffi-
cient to bend the universe’s space up into a topological
3-sphere. In a tour de force, Wheeler and his group of nine

John Wheeler,
 relativity, and
 quantum information
Charles W. Misner, Kip S. Thorne, and Wojciech H. Zurek

From the mid-1950s on, John Wheeler’s “radical conservative-ism” allowed him to explore without
fear crazy-sounding ideas that often led to profound physical insights.

Charles Misner is professor of physics, emeritus, at the University of Maryland. Kip Thorne is Feynman Professor of Theoretical Physics at
the California Institute of Technology. Wojciech Zurek is a laboratory fellow at Los Alamos National Laboratory. Two were John Wheeler’s
PhD students, Misner in 1954–57 and Thorne in 1962–65; Zurek was his student in 1976–79 and his postdoc in 1979–81. Misner and
Thorne coauthored the 1973 textbook Gravitation with Wheeler; Zurek coedited the 1983 Quantum Theory and Measurement with him.
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Development of entanglement detection methods based on structure factors:
Theory: with Dusseldorf, Vienna and Singapore [Phys. Rev. Lett. 103, 100502 (2009)]

Experiment: with Rome La Sapienza [Phys. Rev. Lett.  105, 250501 (2010)]

Quantum computation and entanglement

Development of optimal methods to detect and estimate quantum noise:
Theory: [Phys. Scripta T153, 014044 (2013)]
Experiment: with Rome La Sapienza [Phys. Rev. Lett. 107, 253602 (2011)]
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Analysis of the capacity for 
transmission of thermal bosonic 
transmission lines: how much 
information can your cell-
phone transmit?

Quantum information and quantum metrology

Quantum metrology: using quantum entanglement 
increases the precision of measurements.

[Nature Photonics 5, 222 (2011)]

Bits per channel use per single frequency of 
the channel as a function of the transmission 
efficiency
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Purification of noisy quantum measurements
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We consider the problem of improving noisy quantum measurements by suitable preprocessing strategies
making many noisy detectors equivalent to a single ideal detector. For observables pertaining to finite-dimensional
systems (e.g., qubits or spins) we consider preprocessing strategies that are reminiscent of quantum error
correction procedures and allow one to perfectly measure an observable on a single quantum system for increasing
number of inefficient detectors. For measurements of observables with an unbounded spectrum (e.g., photon
number and homodyne and heterodyne detection), the purification of noisy quantum measurements can be
achieved by preamplification as suggested by Yuen [Opt. Lett. 12, 789 (1987)].

DOI: 10.1103/PhysRevA.82.042315 PACS number(s): 03.67.Pp, 03.65.Ta, 42.50.Dv

I. INTRODUCTION

In many situations it is necessary to measure an observable
in the presence of noise, e.g., when transmitting a quantum
state through a noisy quantum channel that degrades it
exponentially versus distance, corresponding to a degradation
of the measurement.

A number of figures of merit can be used to characterize the
noise of nonideal measurements. An example of such figures of
merit is the variance of the outcomes distribution. An extensive
analysis of the variance affecting quantum measurements has
been done, for example, in Ref. [1]. In a communication
scenario, a relevant figure of merit is represented by the mutual
information between the measurement outcomes and the input
alphabet encoded on an ensemble of states. The problem
of how much classical information can be extracted from a
quantum system was first deeply discussed by Holevo [2],
who provided bounds on the accessible information, and
then revisited in the framework of quantum information by
Schumacher et al. [3]. A further figure of merit is the average
probability of correctly distinguishing input states picked up
from a given ensemble. This is one of the first problems
faced by quantum estimation theory and has been addressed
extensively in the literature [2,4–6]. Finally, another example
of figure of merit is a suitable distance between the noisy and
the ideal outcomes probability for fixed input states.

In this article, we consider the situation where N identical
preparations of the state ρg belonging to some ensemble
S = {(pg,ρg)} are given. We are allowed to use M nonideal
detectors, with M ! N . Each detector is described by a
positive operator-valued measure (POVM), namely a set of
positive operators {P ′

i }, which provides a resolution of the
identity, i.e.,

∑
i P

′
i = I . Each POVM element P ′

i is the noisy
version of an ideal POVM element Pi . A generic quantum
channel R is allowed to act on the N identical copies of the
state ρg before the M noisy POVMs {P ′

i } are measured, and
generic classical postprocessing can be done on the outcomes
of such measurements. Such a scheme of “purification” of
noisy measurements is depicted in Fig. 1. We address the
problem of optimizing the quantum channel R in order to
reduce the effect of noise affecting the POVMs {P ′

i }. We
approach the problem through the minimization of the variance

of the maximum likelihood estimator for the parameter g and
through the maximization of the mutual information between
g and the measurement outcomes.

Notice the analogy between quantum error correction
schemes [7], as depicted in Fig. 2, and the purification
of measurements. For error correction, the message is first
encoded by gateR into one of the carefully chosen code words,
which is then (possibly) corrupted by the noisy communication
channel E . Finally, in gate D some set of commuting
Hermitian operators are measured over the corruption, the
syndrome is used to perform error correction, and, finally,
the recovered code word is decoded into the original message.
For purification of measurements, we are allowed to encode
the N identical copies of input state ρg through the channel
R, in a way similar to quantum error correction. The aim of
such encoding is very different, since after that we are forced
to perform M measurements with the same noisy POVM {P ′

i },
which provide us just classical outcomes to be classically
postprocessed. The limitation of the measurement purification
versus error correction is that the decoding D is restricted
to classical outcomes only. The problem we are considering is
also similar to the problem solved by entanglement purification
protocols [8], since we are generally trying to recast the use
of a number of noisy measurements to an effective use of
a smaller number with less noise. The article is organized
as follows. In Sec. II we specify the general problem to a
qubit with isotropic noise, and then we face the optimization
considering different figures of merit, in Sec. III we show
how to minimize the measurement noise, while in Sec. IV
we maximize the mutual information between the parameter
describing the state and the outcomes of the POVMs. In Secs. V
and VI, we consider observables with unbounded spectrum,
for which the concept of amplification applies, and we review
the scheme of Yuen [9] for purifying photodetectors (Sec. V)
and homodyne and heterodyne detectors (Sec. VI). Finally,
Sec. VII is devoted to conclusions.

II. PURIFICATION OF QUBIT MEASUREMENTS

Let us specify the general problem we are considering. We
are provided with N identical copies of the input state ρg of
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FIG. 1. Purification scheme for noisy quantum measurements.

dimension d. In what follows we will always suppose that
the elements of the POVMs {Pi} and {P ′

i } are d, which has
been proved to be the optimal choice for d = 2 [10], when the
mutual information is optimized.1 We suppose that each noisy
element P ′

i is obtained acting with the same channel E on the
corresponding element Pi of the ideal POVM

P ′
i = E∨(Pi), (1)

where E∨ denotes the Heisenberg-picture version of the
channel E . Equation (1) shows that the ideal POVM {Pi} is
“cleaner” than the noisy POVM {P ′

i } in the sense of the partial
ordering introduced in Ref. [12], as depicted in Fig. 3.

We consider a qubit (so d = 2) parametrized as

ρa,b =
(

a b

b∗ 1 − a

)
. (2)

We are interested in the observable σz, and we suppose to have
at our disposal M noisy POVMs {P ′

i } of σz, i.e., Pi = |i〉〈i|.
We assume a simple kind of noise acting on each POVM, i.e.,
the isotropic noise

E∨(Pi) = αPi + βI, (3)

so P ′
i = α|i〉〈i| + βI .

We suppose we have an N = 1 qubit state and consider as a
purification channel R the orthogonal cloning C, with respect
to the basis of eigenstates of the observable σz,

C(ρ) =
∑

i=0,1

〈i|ρ|i〉|i〉〈i|⊗M. (4)

The conditional probability p( (ı|a,b) of obtaining outcomes
(ı = {i1, . . . ,iM} given the state parametrized by a,b does not
depend on b and can be explicitly written as

p( (ı|a) = Tr[C(ρ)E∨(Pi)⊗M ]. (5)

1Indeed, for d > 2 it has been shown in Ref. [11] that a measurement
with number of outcomes larger than the dimension of the span of
the input states can improve the mutual information.

{ψi}
R E D

FIG. 2. Scheme for quantum error correction.

Pi = E Pi

FIG. 3. Noisy POVM element.

We substitute Eqs. (4) and (3) into Eq. (5) to obtain

p( (ı|a) = Tr{[a|0〉〈0|⊗M + (1 − a)|1〉〈1|⊗M ]

⊗ M
j=1(α|ij 〉〈ij | + βI )}. (6)

We observe that the probability p( (ı|a) depends only on the
number of outcomes 0 and 1 in the measurement (i.e., not on
their position). On defining such integers as M0 and M1 =
M − M0, we obtain

p(M1|a) =
(

M

M1

)
[a(α + β)M0βM1 + (1 − a)(α + β)M1βM0 ].

(7)

For the normalization condition of the POVM in Eq. (3)
one has α = 1 − 2β, so 0 ! β ! 1

2 , and hence

p(M1|a) =
(

M

M1

)
{a[(1 − β)M0βM1 − (1 − β)M1βM0 ]

+ (1 − β)M1βM0}. (8)

One can easily check the normalization of this probability,
i.e.,

∑M
M1=0 p(M1|a) = 1. In the case of ideal measurements

for which β = 0, the non-null probabilities are obtained just
for M1 = 0 and for M1 = M , namely

p(M1 = 0|a) = a, p(M1 = M|a) = 1 − a, (9)

whereas in the completely isotropic case (i.e., β = 1
2 ) the

probability p(M1|a) = ( M
M1

)( 1
2 )M is independent of a, namely

no information can be obtained about the state. Note that also
the coherent channel, widely used in encoding schemes for
quantum error correction as [13]

C ′(ρ) =
∑

i,j=0,1

〈i|ρ|j 〉|i〉〈j |⊗M, (10)

leads to the same probability distribution Eq. (8), since P ′
i are

diagonal on the σz basis.

III. MINIMIZATION OF MEASUREMENT NOISE

We show how to apply the maximum likelihood (ML)
criterion to obtain the optimal estimator for the expectation
value of σz, by means of our measurement purification scheme.
Our aim is to show an improvement of estimation in terms of
variance by increasing the uses of the POVM.

The ML criterion provides the following estimator for a in
the state Eq. (2):

aML = arg max
a

1
n
L(a|M1), (11)

where n is the number of (joint) outcomes (runs of the
purification scheme depicted in Fig. 1), L(a|M1) is the so-
called log-likelihood functional

L(a|M1) =
n∑

j=1

log2 pj (M1|a), (12)
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DALL’ARNO, D’ARIANO, AND SACCHI PHYSICAL REVIEW A 82, 042315 (2010)

ρg
1

R

1
Pi1

ρg
2 2

Pi2

ρg
. . . . . .

Pi...

ρg
N . . .

Pi...

M
PiM

FIG. 1. Purification scheme for noisy quantum measurements.

dimension d. In what follows we will always suppose that
the elements of the POVMs {Pi} and {P ′

i } are d, which has
been proved to be the optimal choice for d = 2 [10], when the
mutual information is optimized.1 We suppose that each noisy
element P ′

i is obtained acting with the same channel E on the
corresponding element Pi of the ideal POVM

P ′
i = E∨(Pi), (1)

where E∨ denotes the Heisenberg-picture version of the
channel E . Equation (1) shows that the ideal POVM {Pi} is
“cleaner” than the noisy POVM {P ′

i } in the sense of the partial
ordering introduced in Ref. [12], as depicted in Fig. 3.

We consider a qubit (so d = 2) parametrized as

ρa,b =
(

a b

b∗ 1 − a

)
. (2)

We are interested in the observable σz, and we suppose to have
at our disposal M noisy POVMs {P ′

i } of σz, i.e., Pi = |i〉〈i|.
We assume a simple kind of noise acting on each POVM, i.e.,
the isotropic noise

E∨(Pi) = αPi + βI, (3)

so P ′
i = α|i〉〈i| + βI .

We suppose we have an N = 1 qubit state and consider as a
purification channel R the orthogonal cloning C, with respect
to the basis of eigenstates of the observable σz,

C(ρ) =
∑

i=0,1

〈i|ρ|i〉|i〉〈i|⊗M. (4)

The conditional probability p( (ı|a,b) of obtaining outcomes
(ı = {i1, . . . ,iM} given the state parametrized by a,b does not
depend on b and can be explicitly written as

p( (ı|a) = Tr[C(ρ)E∨(Pi)⊗M ]. (5)

1Indeed, for d > 2 it has been shown in Ref. [11] that a measurement
with number of outcomes larger than the dimension of the span of
the input states can improve the mutual information.
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We substitute Eqs. (4) and (3) into Eq. (5) to obtain

p( (ı|a) = Tr{[a|0〉〈0|⊗M + (1 − a)|1〉〈1|⊗M ]

⊗ M
j=1(α|ij 〉〈ij | + βI )}. (6)

We observe that the probability p( (ı|a) depends only on the
number of outcomes 0 and 1 in the measurement (i.e., not on
their position). On defining such integers as M0 and M1 =
M − M0, we obtain

p(M1|a) =
(

M

M1

)
[a(α + β)M0βM1 + (1 − a)(α + β)M1βM0 ].

(7)

For the normalization condition of the POVM in Eq. (3)
one has α = 1 − 2β, so 0 ! β ! 1

2 , and hence

p(M1|a) =
(

M

M1

)
{a[(1 − β)M0βM1 − (1 − β)M1βM0 ]

+ (1 − β)M1βM0}. (8)

One can easily check the normalization of this probability,
i.e.,

∑M
M1=0 p(M1|a) = 1. In the case of ideal measurements

for which β = 0, the non-null probabilities are obtained just
for M1 = 0 and for M1 = M , namely

p(M1 = 0|a) = a, p(M1 = M|a) = 1 − a, (9)

whereas in the completely isotropic case (i.e., β = 1
2 ) the

probability p(M1|a) = ( M
M1

)( 1
2 )M is independent of a, namely

no information can be obtained about the state. Note that also
the coherent channel, widely used in encoding schemes for
quantum error correction as [13]

C ′(ρ) =
∑

i,j=0,1

〈i|ρ|j 〉|i〉〈j |⊗M, (10)

leads to the same probability distribution Eq. (8), since P ′
i are

diagonal on the σz basis.

III. MINIMIZATION OF MEASUREMENT NOISE

We show how to apply the maximum likelihood (ML)
criterion to obtain the optimal estimator for the expectation
value of σz, by means of our measurement purification scheme.
Our aim is to show an improvement of estimation in terms of
variance by increasing the uses of the POVM.

The ML criterion provides the following estimator for a in
the state Eq. (2):

aML = arg max
a

1
n
L(a|M1), (11)

where n is the number of (joint) outcomes (runs of the
purification scheme depicted in Fig. 1), L(a|M1) is the so-
called log-likelihood functional

L(a|M1) =
n∑

j=1

log2 pj (M1|a), (12)
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dimension d. In what follows we will always suppose that
the elements of the POVMs {Pi} and {P ′

i } are d, which has
been proved to be the optimal choice for d = 2 [10], when the
mutual information is optimized.1 We suppose that each noisy
element P ′

i is obtained acting with the same channel E on the
corresponding element Pi of the ideal POVM

P ′
i = E∨(Pi), (1)

where E∨ denotes the Heisenberg-picture version of the
channel E . Equation (1) shows that the ideal POVM {Pi} is
“cleaner” than the noisy POVM {P ′

i } in the sense of the partial
ordering introduced in Ref. [12], as depicted in Fig. 3.

We consider a qubit (so d = 2) parametrized as
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)
. (2)

We are interested in the observable σz, and we suppose to have
at our disposal M noisy POVMs {P ′

i } of σz, i.e., Pi = |i〉〈i|.
We assume a simple kind of noise acting on each POVM, i.e.,
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where n is the number of (joint) outcomes (runs of the
purification scheme depicted in Fig. 1), L(a|M1) is the so-
called log-likelihood functional

L(a|M1) =
n∑

j=1

log2 pj (M1|a), (12)

042315-2

Potere informazionale delle misure quantistiche
Per quale ensemble di stati R una data misura ∏ fornisce più informazione ?

DALL’ARNO, D’ARIANO, AND SACCHI PHYSICAL REVIEW A 83, 062304 (2011)

Given a Markov chain X → Y → Z, that is, a set of
three random variables X, Y , and Z, with Z conditionally
independent of X, one has the data-processing inequality
I (X : Y ) ! I (X : Z). In fact,

I (X : Z) = I (X : Y ) − I (X : Y |Z), (5)

and I (X : Y |Z) ! 0.
An ensemble of quantum states R = {pi,ρi}Mi=1 is repre-

sented by a set of M density matrices ρi (positive semidefinite
unit-trace operators), each with a prior probability pi . For
ensembles of pure states we replace the density matrices
with the normalized states, and we write V = {pi,|ψi〉}Mi=1.
A quantum measurement is described by a positive operator-
valued measurement (POVM) # = {#j }Nj=1, defined as a set
of N positive semidefinite operators #j that sum to identity,
namely,

∑N
j=1 #j = 1. If we consider an ensemble R =

{pi,ρi} and a POVM # = {#j }, the conditional probability
pj |i of outcome j given state ρi is given by the Born rule, that
is, pj |i = Tr[ρi#j ]. In the case of a POVM # performed over
an ensemble R, the mutual information is a measure of how
much the outcomes of the POVM # are correlated with states
ρi ; in fact,

I (R,#) :=
∑

i,j

piTr[ρi#j ] log2
Tr[ρi#j ]∑

k pkTr[ρk#j ]
. (6)

Now we can introduce the informational power of a POVM,
the quantity that we analyze in the rest of this work.

Definition 1. The informational power W (#) of a POVM
# is the maximum over all possible ensembles of states R of
the mutual information between # and R:

W (#) = max
R

I (R,#). (7)

We call any ensemble that maximizes the mutual information
a maximally informative ensemble for #.

A. Informational power as a classical capacity

Given the tensor product ⊗N
n=1#

n = {⊗N
n=1#

n
jn

} describing
the parallel use of N POVMs, by using entangled input states
one may ask if the informational power is superadditive.
We recall that the analogous quantity in the problem of
optimization of POVMs, namely, the accessible information,
is additive [6].

According to [4] (see also [7,8]) we provide the following
definitions.

Definition 2. Given a channel $ from a Hilbert space H to
a Hilbert space K, the single-use channel capacity is given by

C1($) := sup
R

sup
%

I ($(R),%), (8)

where the suprema are taken over all ensembles R in H and
over all POVMs % on K.

Definition 3. A q-c channel $# is defined as

$#(ρ) :=
∑

j

Tr[ρ#j ]|j 〉〈j |, (9)

where # = {#j } is a POVM and |j 〉 is an orthonormal basis.
A q-c channel $# is a decision rule that maps quantum

states into classical states via a measurement #.

Proposition 1. The informational power of a POVM # =
{#j } is equal to the single-use capacity C1($#) of the q-c
channel $#; that is,

C1($#) = W (#). (10)

Proof. Consider an ensemble R = {pi,ρi} and a POVM
% = {%k}. Introduce the random variables X, Y , and Z.
Take X with prior probability pi . Take Y such that the
conditional probability of outcome j of Y given outcome i
of X is pj |i = Tr[#jρi]. Take Z such that the conditional
probability of outcome k of Z given outcome j of Y is
qk|j = 〈j |%k|j 〉. Clearly, the joint probability of outcome i
and k of X and Z, respectively, is given by piTr[%k$#(ρi)],
so I (X : Z) = I ($#(R),%), whereas I (X : Y ) = I (R,#).

Notice that X → Y → Z is a Markov chain, so Eq. (5)
holds. By choosing %k = |k〉〈k|, one has qk|j = δj,k , so
H (Y |Z) = 0, and I (X : Y |Z) = H (Y |Z) − H (Y |X,Z) = 0
for any {pi}. Thus,

sup
%

I ($#(R),%) = I ($#(R),{|k〉〈k|}). (11)

Since pi〈k|$#(ρi)|k〉 = piTr[ρi#k], we have

C1($#) = sup
R

I ($#(R),{|k〉〈k|}) = sup
R

I (R,#) = W (#).

(12)

"
Proposition 2. The informational power W (#) is an additive

quantity; that is,

W
(
⊗N

n=1 #n
)

=
N∑

n=1

W (#n). (13)

Proof. Since the tensor product of q-c channels is a q-c
channel, that is, ⊗N

n=1$#n = $⊗N
n=1#

n , the statement follows
immediately from Proposition 1 and from the additivity
property of the capacity for q-c channels [4,7]. "

B. Duality between informational power and accessible
information

According to [9], we provide the following definition.
Definition 4. The accessible information A(R) of an ensem-

ble R = {pi,ρi} is the maximum over all possible POVMs #
of the mutual information between R and #; namely,

A(R) = max
#

I (R,#). (14)

We call any POVM that maximizes the mutual information a
maximally informative POVM for R.

The accessible information of the ensemble R = {pi,ρi} is
upper bounded by the Holevo quantity [9],

A(R) # χ (R) := S(ρR) −
∑

i

piS(ρi), (15)

where S(ρ) := −Tr[ρ log2 ρ] is the von Neumann entropy
and ρR =

∑
i piρi . In contrast, one has the following lower

bound [10]:

A(R) ! Q(ρR) −
∑

i

piQ(ρi), (16)
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Now we can introduce the informational power of a POVM,
the quantity that we analyze in the rest of this work.

Definition 1. The informational power W (#) of a POVM
# is the maximum over all possible ensembles of states R of
the mutual information between # and R:

W (#) = max
R

I (R,#). (7)

We call any ensemble that maximizes the mutual information
a maximally informative ensemble for #.

A. Informational power as a classical capacity

Given the tensor product ⊗N
n=1#

n = {⊗N
n=1#

n
jn

} describing
the parallel use of N POVMs, by using entangled input states
one may ask if the informational power is superadditive.
We recall that the analogous quantity in the problem of
optimization of POVMs, namely, the accessible information,
is additive [6].

According to [4] (see also [7,8]) we provide the following
definitions.

Definition 2. Given a channel $ from a Hilbert space H to
a Hilbert space K, the single-use channel capacity is given by

C1($) := sup
R

sup
%

I ($(R),%), (8)

where the suprema are taken over all ensembles R in H and
over all POVMs % on K.

Definition 3. A q-c channel $# is defined as

$#(ρ) :=
∑

j

Tr[ρ#j ]|j 〉〈j |, (9)

where # = {#j } is a POVM and |j 〉 is an orthonormal basis.
A q-c channel $# is a decision rule that maps quantum

states into classical states via a measurement #.

Proposition 1. The informational power of a POVM # =
{#j } is equal to the single-use capacity C1($#) of the q-c
channel $#; that is,

C1($#) = W (#). (10)

Proof. Consider an ensemble R = {pi,ρi} and a POVM
% = {%k}. Introduce the random variables X, Y , and Z.
Take X with prior probability pi . Take Y such that the
conditional probability of outcome j of Y given outcome i
of X is pj |i = Tr[#jρi]. Take Z such that the conditional
probability of outcome k of Z given outcome j of Y is
qk|j = 〈j |%k|j 〉. Clearly, the joint probability of outcome i
and k of X and Z, respectively, is given by piTr[%k$#(ρi)],
so I (X : Z) = I ($#(R),%), whereas I (X : Y ) = I (R,#).

Notice that X → Y → Z is a Markov chain, so Eq. (5)
holds. By choosing %k = |k〉〈k|, one has qk|j = δj,k , so
H (Y |Z) = 0, and I (X : Y |Z) = H (Y |Z) − H (Y |X,Z) = 0
for any {pi}. Thus,

sup
%

I ($#(R),%) = I ($#(R),{|k〉〈k|}). (11)

Since pi〈k|$#(ρi)|k〉 = piTr[ρi#k], we have

C1($#) = sup
R

I ($#(R),{|k〉〈k|}) = sup
R

I (R,#) = W (#).

(12)

"
Proposition 2. The informational power W (#) is an additive

quantity; that is,

W
(
⊗N

n=1 #n
)

=
N∑

n=1

W (#n). (13)

Proof. Since the tensor product of q-c channels is a q-c
channel, that is, ⊗N

n=1$#n = $⊗N
n=1#

n , the statement follows
immediately from Proposition 1 and from the additivity
property of the capacity for q-c channels [4,7]. "

B. Duality between informational power and accessible
information

According to [9], we provide the following definition.
Definition 4. The accessible information A(R) of an ensem-

ble R = {pi,ρi} is the maximum over all possible POVMs #
of the mutual information between R and #; namely,

A(R) = max
#

I (R,#). (14)

We call any POVM that maximizes the mutual information a
maximally informative POVM for R.

The accessible information of the ensemble R = {pi,ρi} is
upper bounded by the Holevo quantity [9],

A(R) # χ (R) := S(ρR) −
∑

i

piS(ρi), (15)

where S(ρ) := −Tr[ρ log2 ρ] is the von Neumann entropy
and ρR =

∑
i piρi . In contrast, one has the following lower

bound [10]:

A(R) ! Q(ρR) −
∑

i

piQ(ρi), (16)
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dimension d. In what follows we will always suppose that
the elements of the POVMs {Pi} and {P ′

i } are d, which has
been proved to be the optimal choice for d = 2 [10], when the
mutual information is optimized.1 We suppose that each noisy
element P ′

i is obtained acting with the same channel E on the
corresponding element Pi of the ideal POVM

P ′
i = E∨(Pi), (1)

where E∨ denotes the Heisenberg-picture version of the
channel E . Equation (1) shows that the ideal POVM {Pi} is
“cleaner” than the noisy POVM {P ′

i } in the sense of the partial
ordering introduced in Ref. [12], as depicted in Fig. 3.

We consider a qubit (so d = 2) parametrized as

ρa,b =
(

a b

b∗ 1 − a

)
. (2)

We are interested in the observable σz, and we suppose to have
at our disposal M noisy POVMs {P ′

i } of σz, i.e., Pi = |i〉〈i|.
We assume a simple kind of noise acting on each POVM, i.e.,
the isotropic noise

E∨(Pi) = αPi + βI, (3)

so P ′
i = α|i〉〈i| + βI .

We suppose we have an N = 1 qubit state and consider as a
purification channel R the orthogonal cloning C, with respect
to the basis of eigenstates of the observable σz,

C(ρ) =
∑

i=0,1

〈i|ρ|i〉|i〉〈i|⊗M. (4)

The conditional probability p( (ı|a,b) of obtaining outcomes
(ı = {i1, . . . ,iM} given the state parametrized by a,b does not
depend on b and can be explicitly written as

p( (ı|a) = Tr[C(ρ)E∨(Pi)⊗M ]. (5)

1Indeed, for d > 2 it has been shown in Ref. [11] that a measurement
with number of outcomes larger than the dimension of the span of
the input states can improve the mutual information.

{ψi}
R E D

FIG. 2. Scheme for quantum error correction.

Pi = E Pi

FIG. 3. Noisy POVM element.

We substitute Eqs. (4) and (3) into Eq. (5) to obtain

p( (ı|a) = Tr{[a|0〉〈0|⊗M + (1 − a)|1〉〈1|⊗M ]

⊗ M
j=1(α|ij 〉〈ij | + βI )}. (6)

We observe that the probability p( (ı|a) depends only on the
number of outcomes 0 and 1 in the measurement (i.e., not on
their position). On defining such integers as M0 and M1 =
M − M0, we obtain

p(M1|a) =
(

M

M1

)
[a(α + β)M0βM1 + (1 − a)(α + β)M1βM0 ].

(7)

For the normalization condition of the POVM in Eq. (3)
one has α = 1 − 2β, so 0 ! β ! 1

2 , and hence

p(M1|a) =
(

M

M1

)
{a[(1 − β)M0βM1 − (1 − β)M1βM0 ]

+ (1 − β)M1βM0}. (8)

One can easily check the normalization of this probability,
i.e.,

∑M
M1=0 p(M1|a) = 1. In the case of ideal measurements

for which β = 0, the non-null probabilities are obtained just
for M1 = 0 and for M1 = M , namely

p(M1 = 0|a) = a, p(M1 = M|a) = 1 − a, (9)

whereas in the completely isotropic case (i.e., β = 1
2 ) the

probability p(M1|a) = ( M
M1

)( 1
2 )M is independent of a, namely

no information can be obtained about the state. Note that also
the coherent channel, widely used in encoding schemes for
quantum error correction as [13]

C ′(ρ) =
∑

i,j=0,1

〈i|ρ|j 〉|i〉〈j |⊗M, (10)

leads to the same probability distribution Eq. (8), since P ′
i are

diagonal on the σz basis.

III. MINIMIZATION OF MEASUREMENT NOISE

We show how to apply the maximum likelihood (ML)
criterion to obtain the optimal estimator for the expectation
value of σz, by means of our measurement purification scheme.
Our aim is to show an improvement of estimation in terms of
variance by increasing the uses of the POVM.

The ML criterion provides the following estimator for a in
the state Eq. (2):

aML = arg max
a

1
n
L(a|M1), (11)

where n is the number of (joint) outcomes (runs of the
purification scheme depicted in Fig. 1), L(a|M1) is the so-
called log-likelihood functional

L(a|M1) =
n∑

j=1

log2 pj (M1|a), (12)
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dimension d. In what follows we will always suppose that
the elements of the POVMs {Pi} and {P ′

i } are d, which has
been proved to be the optimal choice for d = 2 [10], when the
mutual information is optimized.1 We suppose that each noisy
element P ′

i is obtained acting with the same channel E on the
corresponding element Pi of the ideal POVM

P ′
i = E∨(Pi), (1)

where E∨ denotes the Heisenberg-picture version of the
channel E . Equation (1) shows that the ideal POVM {Pi} is
“cleaner” than the noisy POVM {P ′

i } in the sense of the partial
ordering introduced in Ref. [12], as depicted in Fig. 3.

We consider a qubit (so d = 2) parametrized as

ρa,b =
(

a b

b∗ 1 − a

)
. (2)

We are interested in the observable σz, and we suppose to have
at our disposal M noisy POVMs {P ′

i } of σz, i.e., Pi = |i〉〈i|.
We assume a simple kind of noise acting on each POVM, i.e.,
the isotropic noise

E∨(Pi) = αPi + βI, (3)

so P ′
i = α|i〉〈i| + βI .

We suppose we have an N = 1 qubit state and consider as a
purification channel R the orthogonal cloning C, with respect
to the basis of eigenstates of the observable σz,

C(ρ) =
∑

i=0,1

〈i|ρ|i〉|i〉〈i|⊗M. (4)

The conditional probability p( (ı|a,b) of obtaining outcomes
(ı = {i1, . . . ,iM} given the state parametrized by a,b does not
depend on b and can be explicitly written as

p( (ı|a) = Tr[C(ρ)E∨(Pi)⊗M ]. (5)

1Indeed, for d > 2 it has been shown in Ref. [11] that a measurement
with number of outcomes larger than the dimension of the span of
the input states can improve the mutual information.
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We substitute Eqs. (4) and (3) into Eq. (5) to obtain

p( (ı|a) = Tr{[a|0〉〈0|⊗M + (1 − a)|1〉〈1|⊗M ]

⊗ M
j=1(α|ij 〉〈ij | + βI )}. (6)

We observe that the probability p( (ı|a) depends only on the
number of outcomes 0 and 1 in the measurement (i.e., not on
their position). On defining such integers as M0 and M1 =
M − M0, we obtain

p(M1|a) =
(

M

M1

)
[a(α + β)M0βM1 + (1 − a)(α + β)M1βM0 ].

(7)

For the normalization condition of the POVM in Eq. (3)
one has α = 1 − 2β, so 0 ! β ! 1

2 , and hence

p(M1|a) =
(

M

M1

)
{a[(1 − β)M0βM1 − (1 − β)M1βM0 ]

+ (1 − β)M1βM0}. (8)

One can easily check the normalization of this probability,
i.e.,

∑M
M1=0 p(M1|a) = 1. In the case of ideal measurements

for which β = 0, the non-null probabilities are obtained just
for M1 = 0 and for M1 = M , namely

p(M1 = 0|a) = a, p(M1 = M|a) = 1 − a, (9)

whereas in the completely isotropic case (i.e., β = 1
2 ) the

probability p(M1|a) = ( M
M1

)( 1
2 )M is independent of a, namely

no information can be obtained about the state. Note that also
the coherent channel, widely used in encoding schemes for
quantum error correction as [13]

C ′(ρ) =
∑

i,j=0,1

〈i|ρ|j 〉|i〉〈j |⊗M, (10)

leads to the same probability distribution Eq. (8), since P ′
i are

diagonal on the σz basis.

III. MINIMIZATION OF MEASUREMENT NOISE

We show how to apply the maximum likelihood (ML)
criterion to obtain the optimal estimator for the expectation
value of σz, by means of our measurement purification scheme.
Our aim is to show an improvement of estimation in terms of
variance by increasing the uses of the POVM.

The ML criterion provides the following estimator for a in
the state Eq. (2):

aML = arg max
a

1
n
L(a|M1), (11)

where n is the number of (joint) outcomes (runs of the
purification scheme depicted in Fig. 1), L(a|M1) is the so-
called log-likelihood functional

L(a|M1) =
n∑

j=1

log2 pj (M1|a), (12)
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I. INTRODUCTION

More than 80 years after its formulation, quantum theory
is still mysterious. The theory has a solid mathematical foun-
dation, addressed by Hilbert, von Neumann, and Nordheim
in 1928 [1] and brought to completion in the monumental
work by von Neumann [2]. However, this formulation is based
on the abstract framework of Hilbert spaces and self-adjoint
operators, which, to say the least, are far from having an
intuitive physical meaning. For example, the postulate stating
that the pure states of a physical system are represented by
unit vectors in a suitable Hilbert space appears as rather
artificial: which are the physical laws that lead to this very
specific choice of mathematical representation? The problem
with the standard textbook formulations of quantum theory
is that the postulates therein impose particular mathematical
structures without providing any fundamental reason for this
choice: the mathematics of Hilbert spaces is adopted without
further questioning as a prescription that “works well” when
used as a black box to produce experimental predictions. In
a satisfactory axiomatization of quantum theory, instead, the
mathematical structures of Hilbert spaces (or C* algebras)
should emerge as consequences of physically meaningful
postulates, that is, postulates formulated exclusively in the
language of physics: this language refers to notions like
physical system, experiment, or physical process and not to
notions like Hilbert space, self-adjoint operator, or unitary
operator. Note that any serious axiomatization has to be based
on postulates that can be precisely translated in mathematical
terms. However, the point with the present status of quantum
theory is that there are postulates that have a precise mathe-
matical statement, but cannot be translated back into language
of physics. Those are the postulates that one would like to
avoid.

The need for a deeper understanding of quantum the-
ory in terms of fundamental principles was clear since
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the very beginning. Von Neumann himself expressed his
dissatisfaction with his mathematical formulation of quan-
tum theory with the surprising words “I don’t believe in
Hilbert space anymore,” reported by Birkhoff in [3]. Re-
alizing the physical relevance of the axiomatization prob-
lem, Birkhoff and von Neumann made an attempt to un-
derstand quantum theory as a new form of logic [4]:
the key idea was that propositions about the physical world
must be treated in a suitable logical framework, different from
classical logics, where the operations AND and OR are no longer
distributive. This work inaugurated the tradition of quantum
logics, which led to several attempts to axiomatize quantum
theory, notably by Mackey [5] and Jauch and Piron [6] (see
Ref. [7] for a review on the more recent progresses of quantum
logics). In general, a certain degree of technicality, mainly
related to the emphasis on infinite-dimensional systems, makes
these results far from providing a clear-cut description of
quantum theory in terms of fundamental principles. Later
Ludwig initiated an axiomatization program [8] adopting an
operational approach, where the basic notions are those of
preparation devices and measuring devices and the postulates
specify how preparations and measurements combine to give
the probabilities of experimental outcomes. However, despite
the original intent, Ludwig’s axiomatization did not succeed
in deriving Hilbert spaces from purely operational notions, as
some of the postulates still contained mathematical notions
with no operational interpretation.

More recently, the rise of quantum information science
moved the emphasis from logics to information processing.
The new field clearly showed that the mathematical principles
of quantum theory imply an enormous amount of information-
theoretic consequences, such as the no-cloning theorem [9,10],
the possibility of teleportation [11], secure key distribution
[12–14], or of factoring numbers in polynomial time [15]. The
natural question is whether the implication can be reversed: is
it possible to retrieve quantum theory from a set of purely
informational principles? Another contribution of quantum
information has been to shift the emphasis to finite dimensional
systems, which allow for a simpler treatment but still possess
all the remarkable quantum features. In a sense, the study
of finite dimensional systems allows one to decouple the
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