www.qubit.it dariano@unipv.it

Informazione Quantistica e Fondamenti della Meccanica Quantistica e dei Campi

- Teoria Fisica dell’Informazione
- Fondamenti della Meccanica Quantistica
www.qubit.it dariano@unipv.it

Fisica Quantistica della Computazione

Collaborations

- Los Alamos (LM)
- Fermilab \& UChicago (GMD)
- Oxford and Cambridge (GMD,PP,CM)
- Singapore (CM)
- Roma La Sapienza (GMD,CM,LM)
- Dusseldorf (CM)
- MIT Boston (LM)
- Tsinghua Beijing (GMD,PP)
- Nagoya (GMD,PP)
- ETH Zurigo (PP,GMD)
- Bratislava (AB,PP,GMD)
- Edimburgo (CM)
 www.qubit.it theory group dariano@unipv.it

Quantum Computer

Cultura generale di Fisica Contemporanea

- Meccanica Quantistica sistemi aperti e misurazione, POVMs, ..., Tomografia Quantistica, no-cloning
- Non località e entanglement
- Master Equation
- Metodi ottimizzazione e teoria della stima, approcci Bayesiani
- Teoremi di Shannon, entropie, mutua informazione
- Data-processing theorem
- Complessità computazionale
- Algoritmi
- Crittografia Quantistica
- Ottica nonlineare quantistica
- Misurazioni ottico-quantistiche, congiunte, ...
- Automi cellulari quantistici

Quantum computation and entanglement

Development of entanglement detection methods based on structure factors: Theory: with Dusseldorf, Vienna and Singapore phys. Rev. Lett. 103, 100502 (2009) Experiment: with Rome La Sapienza PPhys. Rev. Lett. 105, 250501 (2000)]

Development of optimal methods to detect and estimate quantum noise:
Theory: [Phys. Scripta T153, 014044 (2013)]
Experiment: with Rome La Sapienza [Phys. Rev. Lett. 107, 253602 (2011)]

Quantum information and quantum metrology

Analysis of the capacity for transmission of thermal bosonic transmission lines: how much information can your cellphone transmit?

Bits per channel use per single frequency of the channel as a function of the transmission efficiency

Quantum metrology: using quantum entanglement increases the precision of measurements.
[Nature Photonics 5, 222 (2011)]

Purificazione di misure quantistiche inefficienti

Un rivelatore inefficiente P_{i}^{\prime} corrisponde ad un rivelatore ideale P_{i} preceduto da un canale di rumore \mathcal{E}

Determinare il migliore pre-processing (canale quantistico \mathcal{R})
per compensare l'inefficienza \mathcal{E}.
Tipicamente, \mathcal{R} uno strumento di clonazione e/o amplificazione quantistici
Potere informazionale delle misure quantistiche
Per quale ensemble di stati R una data misura Π fornisce più informazione ?

$$
W(П)=\max _{R} I(R, \Pi)
$$

$\mathrm{W}(\Pi)$ è equivalente alla capacità del canale $\mathrm{q}-\mathrm{c} \quad \Phi_{\Pi}(\rho):=\sum_{j} \operatorname{Tr}\left[\rho \Pi_{j}\right]|j\rangle\langle j|$
$\mathrm{W}(\Pi)$ è additiva: $\quad W\left(\otimes_{n=1}^{N} \Pi^{n}\right)=\sum_{n=1}^{N} W\left(\Pi^{n}\right)$
Un efficiente algoritmo iterativo consente di valutare $W(\Pi)$ e trovare un corrispondente ensemble massimamente informativo

Lettura ottimale di compact disk

Fondamenti della Meccanica Quantistica (GMD,PP)

|일 Selected for a Viewpoint in Physics
PHYSICAL REVIEW A 84, 012311 (2011)

Informational derivation of quantum theory

Giulio Chiribella*
Perimeter Institute for Theoretical Physics, 31 Caroline Street North, Ontario, Canada N2L $2 \mathrm{Y}^{\dagger}$
Giacomo Mauro D'Ariano ${ }^{\ddagger}$ and Paolo Perinotti ${ }^{\S}$
QUIT Group, Dipartimento di Fisica "A. Volta" and INFN Sezione di Pavia, via Bassi 6, I-27100 Pavia, Italy"
(Received 29 November 2010; published 11 July 2011)
We derive quantum theory from purely informational principles. Five elementary axioms-causality, perfect distinguishability, ideal compression, local distinguishability, and pure conditioning-define a broad class of theories of information processing that can be regarded as standard. One postulate-purification-singles out quantum theory within this class.

- Studio della teoria quantistica "dall'esterno"
- Confronto con toy-theories probabilistiche
- Ruolo dei principi informazionali, interpretazioni realistiche a variabili nascoste
- Località, causalità, reversibilità, entropia
- Interpretazione informazionale di concetti fisici

Quantum Cellular Automata for Quantum Field Theory

